www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Beweis Hessesche Normalform
Beweis Hessesche Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Fr 07.04.2006
Autor: Vivil

Aufgabe
Jeder Punkt     [mm] \bar [/mm] x = [mm] \begin{pmatrix} \bar x_1 \\ \bar x_2 \end{pmatrix} [/mm] der Ebene ist durch die Operation [mm] \barx [/mm] = s + [mm] \beta [/mm] *r + [mm] \gamma [/mm] *a darstellbar; s, r und a sind hier Vektoren, [mm] \beta [/mm] und [mm] \gamma [/mm] sind reelle Zahlen (Gleichung 1).
Setzt man [mm] \gamma [/mm] = 0 und lässt nur den reellen Parameter [mm] \beta [/mm] frei, so erhält man die Punkte der Geraden [mm] \left\{ x I x = s + \beta*r, \beta \in \IR \right\}. [/mm] Wenn unmissverständlich, bezeichnen wir sie auch kurz mit
x = s + [mm] \beta*r. [/mm] Den Vektor s nennt man Stützvektor, r heißt Richtungsvektor und a Orthogonalvektor der Geraden.
Die allgemeine Gleichung (Gleichung 1) kann man durch Multiplikation mit
[mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}} [/mm]  und Umstellung umformen zu [mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}}*\bar [/mm] x - [mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}}*s [/mm] = [mm] \gamma [/mm] * [mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}}*a [/mm] (Gleichung 2)
Die Gleichung 2 ergibt sich aus der Gleichung 1, da das Skalarprodukt [mm] a^T*r [/mm] der orthogonalen Vektoren a und r gleich 0 ist. Der Vektor [mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}} [/mm] in der Gleichung zwei ist normiert, hat also die Länge 1.
Definiert man [mm] \delta [/mm] = [mm] \gamma*{\begin{Vmatrix} a \end{Vmatrix}}, [/mm] so gilt zweierlei:
1. Durch Einsetzen von [mm] \gamma [/mm] in Gleichung 2 erhält man wegen [mm] \bruch{a^T*a}{\begin{Vmatrix} a \end{Vmatrix}^2} [/mm] = 1 :
[mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}}*\bar [/mm] x - [mm] \bruch{a^T}{\begin{Vmatrix} a \end{Vmatrix}}*s [/mm] = [mm] \delta [/mm] (Gleichung 3),

2. [mm] \begin{vmatrix}\delta \end{vmatrix} [/mm] ist der Abstand des Punktes [mm] \bar [/mm] x von der Geraden x = s + [mm] \beta*r. [/mm]
[mm] \delta [/mm] ist > 0, falls [mm] \bar [/mm] x auf der Seite der Geraden liegt, in die a weist.
[mm] \delta [/mm] ist < 0, falls [mm] \bar [/mm] x auf der Seite der Geraden liegt, in die a nicht weist.
[mm] \delta [/mm] ist = 0, falls [mm] \bar [/mm] x auf der Geraden liegt.

Die Geradengleichung (Gleichung 3) für [mm] \delta [/mm] = 0 heißt Hessesche Normalform:
[mm] \bruch{a^Tx}{\begin{Vmatrix} a \end{Vmatrix}} [/mm] - [mm] \bruch{a^Ts}{\begin{Vmatrix} a \end{Vmatrix}} [/mm] = 0.

Hallo,

leider stehe ich mit der Vektorrechnung auf Kriegsfuß.
Dem o.g. Beweis für die Hessesche Normalform kann ich bis zu dem Punkt "Definiert man [mm] \delta [/mm] = [mm] \gamma*{\begin{Vmatrix} a \end{Vmatrix}}, [/mm] so gilt zweierlei: ..." folgen. Dann fängt mein großes Problem an:
Wieso erhalte ich durch Einsetzten von [mm] \gamma [/mm] in Gleichung 2 die Gleichung 3, wo kommt das [mm] a^2 [/mm] unter dem Bruchstrich her?

Kann mir das bitte jemand aufschlüsseln, bzw. die Zwischenschritte von der Gleichung 2 bis zur Gleichung 3 schreiben?

Danke,
Vivil

P.s.: _x: Der Strich sollte eigentlich über dem x sein, wie bei [mm] \bar x_1. [/mm] Hat aber leider nicht mit dem passenden Code funktioniert.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Fr 07.04.2006
Autor: Walde

Hi Vivil,

also Gleichung 2 war:

[mm] \bruch{a^T}{\parallel a\parallel}*x-\bruch{a^T}{\parallel a\parallel}*s=\gamma*\bruch{a^T}{\parallel a\parallel}*a [/mm]

und [mm] \delta=\gamma*\parallel a\parallel, [/mm] also [mm] \gamma=\bruch{\delta}{\parallel a\parallel} [/mm]

und das für [mm] \gamma [/mm] oben einsetzen:

[mm] \bruch{a^T}{\parallel a\parallel}*x-\bruch{a^T}{\parallel a\parallel}*s=\bruch{\delta}{\parallel a\parallel}*\bruch{a^T}{\parallel a\parallel}*a [/mm]

und die rechte Seite lässt sich zusammenfassen zu

[mm] \delta*\bruch{a^T*a}{\parallel a\parallel^2} [/mm]

und da [mm] \parallel a\parallel=\wurzel{a^T*a} [/mm] ist (Stichwort: das Skalarprodukt induziert eine Norm) gilt

[mm] \bruch{a^T*a}{\parallel a\parallel^2}=1 [/mm]

und es bleibt stehen

[mm] \bruch{a^T}{\parallel a\parallel}*x-\bruch{a^T}{\parallel a\parallel}*s=\delta [/mm]

und das ist Gleichung 3

Alles klar? ;-)

L G walde


Bezug
                
Bezug
Beweis Hessesche Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 So 09.04.2006
Autor: Vivil

Danke, das hat mir sehr weiter geholgen.
LG, Vivil

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]