www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Beweis Kosinussatz
Beweis Kosinussatz < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Kosinussatz: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 11:24 So 12.06.2005
Autor: Marie

Hallo!
ich soll den Kosinussatz mit Hilfe der Vektorrechnung beweisen..
die behauptung ist:
| [mm] \vec{c} |^{2} [/mm] = | [mm] \vec{a} |^{2} [/mm] + | [mm] \vec{b} |^{2} [/mm] - 2 | [mm] \vec{a}| [/mm] * | [mm] \vec{b} [/mm] | * cos [mm] \gamma [/mm]

kann mir jemand helfen?

        
Bezug
Beweis Kosinussatz: eigene Lösungsideen?
Status: (Antwort) fertig Status 
Datum: 12:27 So 12.06.2005
Autor: informix

Hallo Marie,
so geht das nicht!

> Hallo!
>  ich soll den Kosinussatz mit Hilfe der Vektorrechnung
> beweisen..
> die behauptung ist:
>  [mm]|\vec{c} |^{2}= |\vec{a} |^{2} + | \vec{b} |^{2} - 2 | \vec{a}| * | \vec{b} | * \cos \gamma[/mm]
>  
> kann mir jemand helfen?

Wir werden dir nur helfen, wenn du uns eigene Lösungsideen hier zeigst und das Bemühen, selbst tätig zu werden. Denn nur dann hast du eine Chance richtig und nachhaltig zu lernen. ;-)
Also:
was sind die Voraussetzungen, was sind die Vektoren dort oben? ...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]