www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Beweis im Integritätsring
Beweis im Integritätsring < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis im Integritätsring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mi 29.11.2006
Autor: Milka_Kuh

Aufgabe
Sei R ein Integritätsring mit |R| < [mm] \infty. [/mm]
Zu zeigen:
Für jedes r [mm] \in [/mm] R-{0} eixstiert eine natürliche Zahl n [mm] \ge [/mm] 1 mit [mm] r^{n}=1. [/mm]
Folgere daraus, dass R ein Körper ist.

Hallo,

ich habe die Aufgabe gelöst. Aber am Ende komme ich nicht weiter, weil mir unklar ist, ob in R-{0} alle Nicht-Null-Elemente invertierbar sind. Ich weiß aus der Vorlesung, dass [mm] R^{x} [/mm] im Allgemeinen ungleich R-{0} ist, sondern nur eine Teilmenge. Und in [mm] R^{x} [/mm] sind ja alle Nicht-Null-Elemente invertierbar...
Zur Aufgabe:
R ist Integritätsring, also ist R kommutativer Ring (Vereinbarung vom Prof.).
Jetzt habe ich folgendes gemacht:
[mm] \produkt_{s \in R-{0}}^{}s [/mm] = (!) [mm] \produkt_{s \in R-{0}}^{}rs=rs_{1}*rs_{2}*...*rs_{n}=r^{n}s_{1}*...*s_{n}= [/mm]
[mm] r^{n}\produkt_{r \in R-{0}}^{}s [/mm]
Erklärung zu (!):  R [mm] \to [/mm] R ist bijektiv, s [mm] \mapsto [/mm] rs und rs [mm] \mapsto r^{-1}rs=s \in [/mm] R durch Linksmultiplikation von [mm] r^{-1}. [/mm]
Also ist [mm] \produkt_{s \in R-{0}}^{}s=r^{n}\produkt_{s \in R-{0}}^{}s [/mm]
Definiere nun [mm] \produkt_{}^{}s [/mm] =: s'
Wenn ich jetzt von Rechts mit s'^{-1} multipliziere, dann erhalte ich genau [mm] r^{n}=1. [/mm] Aber das darf ich ja nur, wenn R ein Körper ist. Weil dann existiert ja für jedes Element außer der Null das Inverse. Ist so die Folgerung gemeint? Das ist genau ist mein Problem mit R-{0} (siehe oben).
Danke für die Hilfe.
Milka

        
Bezug
Beweis im Integritätsring: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Do 30.11.2006
Autor: felixf

Hallo Anna,

> Sei R ein Integritätsring mit |R| < [mm]\infty.[/mm]
>  Zu zeigen:
>  Für jedes r [mm]\in[/mm] R-{0} eixstiert eine natürliche Zahl n [mm]\ge[/mm]
> 1 mit [mm]r^{n}=1.[/mm]
>  Folgere daraus, dass R ein Körper ist.
>  Hallo,
>  
> ich habe die Aufgabe gelöst. Aber am Ende komme ich nicht
> weiter, weil mir unklar ist, ob in R-{0} alle
> Nicht-Null-Elemente invertierbar sind. Ich weiß aus der
> Vorlesung, dass [mm]R^{x}[/mm] im Allgemeinen ungleich R-{0} ist,
> sondern nur eine Teilmenge. Und in [mm]R^{x}[/mm] sind ja alle
> Nicht-Null-Elemente invertierbar...

ich glaube, du denkst grad viel zu kompliziert :) Wenn du zu jedem $r [mm] \in [/mm] R [mm] \setminus \{ 0 \}$ [/mm] ein $n [mm] \ge [/mm] 1$ hast mit [mm] $r^n [/mm] = 1$, dann ist ja $r [mm] \cdot r^{n-1} [/mm] = 1 = [mm] r^{n-1} \cdot [/mm] r$, und es ist [mm] $r^{n-1} \in [/mm] R$ (da $n - 1 [mm] \ge [/mm] 0$). Also ist $r$ somit in [mm] $R^x$. [/mm]

LG Felix


Bezug
                
Bezug
Beweis im Integritätsring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 30.11.2006
Autor: Milka_Kuh

Hallo,

danke für deine Antwort. Wenn jetzt r [mm] \in R^{x} [/mm] ist, dann gilt jetzt doch [mm] R^{x}=R-{ 0 } [/mm] , oder? Weil dann ist R ein Körper.

Lg, Milka

Bezug
                        
Bezug
Beweis im Integritätsring: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Do 30.11.2006
Autor: felixf

Hallo Milka,

> danke für deine Antwort. Wenn jetzt r [mm]\in R^{x}[/mm] ist, dann
> gilt jetzt doch [mm]R^{x}=R-{ 0 }[/mm] , oder? Weil dann ist R ein
> Körper.

ja. Da $r [mm] \in [/mm] R [mm] \setminus \{ 0 \}$ [/mm] beliebig war, folgt somit [mm] $R^x [/mm] = R [mm] \setminus \{ 0 \}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]