www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Beweis stetigkeit, surjektiv
Beweis stetigkeit, surjektiv < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis stetigkeit, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Mi 16.03.2011
Autor: Loriot95

Aufgabe
Es seinen a,b [mm] \in \IR [/mm] mit a < b und h:[0,1] -> [a,b] monoton mit h(0) = a und h(1) = b. Zeigen Sie: Die Funktion h stetig genau dann, wenn h surjektiv ist.

Hallo,

habe hier folgendes gemacht:

[mm] "\Rightarrow": [/mm] Angenommen h wäre nicht surjektiv [mm] \Rightarrow \exists [/mm] y [mm] \in [/mm] [a,b] [mm] \forall [/mm] x [mm] \in [/mm] [0,1]: h(x) [mm] \not= [/mm] y.
[mm] \Righarrow [/mm] h ist unstetig, da [mm] \limes_{x\rightarrow x_{0}} [/mm] h(x) = [mm] h(x_{0}) \not= [/mm] y für alle [mm] x_{0} \in [/mm] [0,1].

[mm] "\Leftarrow": [/mm] h ist surjektiv [mm] \Rightarrow \forall [/mm] y [mm] \in [/mm] [a,b] [mm] \exists [/mm] x [mm] \in [/mm] [0,1]: h(x) = y. Dann folgt aus der Monotonie [mm] \limes_{x\rightarrow x_{0}} [/mm] f(x) = [mm] f(x_{0}) \forall x_{0} \in [/mm] [0,1]

Besonders bei der letzten Implikation bin ich mir unsicher.
Würde mich freuen wenn sich das jemand Mal anschaut.

LG Loriot95

        
Bezug
Beweis stetigkeit, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Mi 16.03.2011
Autor: kamaleonti

Hallo Loriot,
> Es seinen a,b [mm]\in \IR[/mm] mit a < b und h:[0,1] -> [a,b]
> monoton mit h(0) = a und h(1) = b. Zeigen Sie: Die Funktion
> h stetig genau dann, wenn h surjektiv ist.
>  Hallo,
>  
> habe hier folgendes gemacht:
>  
> [mm]"\Rightarrow":[/mm] Angenommen h wäre nicht surjektiv
> [mm]\Rightarrow \exists[/mm] y [mm]\in[/mm] [a,b] [mm]\forall[/mm] x [mm]\in[/mm] [0,1]: h(x)
> [mm]\not=[/mm] y.
>  [mm]\Righarrow[/mm] h ist unstetig, da [mm]\limes_{x\rightarrow x_{0}}[/mm]  h(x) = [mm]h(x_{0}) \not=[/mm] y für alle [mm]x_{0} \in[/mm] [0,1].

Nein, das stimmt so nicht. Du schreibst [mm] \limes_{x\rightarrow x_{0}} h(x)=h(x_{0}). [/mm] Wenn dies deiner Aussage nach aber für alle [mm] x_0\in[0,1] [/mm] gelten würde, dann wäre das gerade Stetigkeit (!).

Tipp: Bei stetigen Funktionen auf Intervallen ist das Bild notwendigerweise wieder ein Intervall (das folgt leicht aus dem Zwischenwertsatz). Das kannst du leicht kaputt machen [...]

>  
> [mm]"\Leftarrow":[/mm] h ist surjektiv [mm]\Rightarrow \forall[/mm] y [mm]\in[/mm] [a,b] [mm]\exists[/mm] x [mm]\in[/mm] [0,1]: h(x) = y. Dann folgt aus der
> Monotonie [mm]\limes_{x\rightarrow x_{0}}[/mm] f(x) = [mm]f(x_{0}) \forall x_{0} \in[/mm] [0,1]

Das stimmt, aber man kann hier vllt noch ein paar Worte darüber verlieren, warum dem so ist.
Eine monotone Funktion besitzt höchstens Sprungstellen als Unstetigkeitsstellen. Wegen Surjektivität ist dies aber ausgeschlossen.

>  
> Besonders bei der letzten Implikation bin ich mir
> unsicher.
>  Würde mich freuen wenn sich das jemand Mal anschaut.
>  
> LG Loriot95

LG

Bezug
                
Bezug
Beweis stetigkeit, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Mi 16.03.2011
Autor: Loriot95

Vielen Dank für deine Hilfe. Habe es jetzt noch Mal probiert. Hoffe so ist es nun richtig:

[mm] "\Rightarrow": [/mm] Sei h stetig [mm] \Rightarrow [/mm] h nimmt jeden Wert zwischen h(0) und h(1) an (ZWS) [mm] \Rightarrow \forall [/mm] y [mm] \in [/mm] [a,b] [mm] \exists [/mm] x [mm] \in [/mm] [0,1]: f(x) = y. Also ist h surjektiv.

[mm] "\Leftarrow": [/mm] Sei h surjektiv. Da h monoton ist, besitzt h höchstens Sprungstellen als Unstetigkeitsstellen. Da aber h surjektiv ist, ist dies nicht möglich. Also ist h stetig.

Stimmt das so? Wie ist es bei der zweiten Implikation? Ist das nicht zu unmathematisch notiert?

LG loriot95

Bezug
                        
Bezug
Beweis stetigkeit, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mi 16.03.2011
Autor: fred97


> Vielen Dank für deine Hilfe. Habe es jetzt noch Mal
> probiert. Hoffe so ist es nun richtig:
>  
> [mm]"\Rightarrow":[/mm] Sei h stetig [mm]\Rightarrow[/mm] h nimmt jeden Wert
> zwischen h(0) und h(1) an (ZWS) [mm]\Rightarrow \forall[/mm] y [mm]\in[/mm]
> [a,b] [mm]\exists[/mm] x [mm]\in[/mm] [0,1]: f(x) = y. Also ist h surjektiv.

Das ist O.K.

>  
> [mm]"\Leftarrow":[/mm] Sei h surjektiv. Da h monoton ist, besitzt h
> höchstens Sprungstellen als Unstetigkeitsstellen. Da aber
> h surjektiv ist, ist dies nicht möglich. Also ist h
> stetig.
>
> Stimmt das so? Wie ist es bei der zweiten Implikation? Ist
> das nicht zu unmathematisch notiert?

Es ist vor allem nicht begründet !

Wir machen einen Widerspruchsbeweis: sei [mm] x_0 \in [/mm] [0,1]. Annahme: h ist in [mm] x_0 [/mm] nicht stetig. Dann haben wir:

            (1) $ [mm] \limes_{x \to x_0+0}h(x) \ne h(x_0)$ [/mm]

oder

            (2) $ [mm] \limes_{x \to x_0-0}h(x) \ne h(x_0)$ [/mm]

(Falls [mm] $x_0 \in \{0,1 \}$, [/mm] so gilt natürlich entweder (1) oder (2)).

Es gelte etwa (2) (der weitere Beweis für denFall (1) geht genauso)

Dann gilt:

            $ L:= [mm] \limes_{x \to x_0-0}h(x)
Frage an Dich: warum gilt das ?

Nun betrachte das Intervall $I:=(L, [mm] h(x_0))$. [/mm] Es ist


            (3)    $I [mm] \subset [/mm] [a,b]=h([0,1])$

So, nun nenne mir eine von den obigen Zeilen, die (3) widerspricht.

FRED

>  
> LG loriot95


Bezug
                                
Bezug
Beweis stetigkeit, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 16.03.2011
Autor: Loriot95


> > Vielen Dank für deine Hilfe. Habe es jetzt noch Mal
> > probiert. Hoffe so ist es nun richtig:
>  >  
> > [mm]"\Rightarrow":[/mm] Sei h stetig [mm]\Rightarrow[/mm] h nimmt jeden Wert
> > zwischen h(0) und h(1) an (ZWS) [mm]\Rightarrow \forall[/mm] y [mm]\in[/mm]
> > [a,b] [mm]\exists[/mm] x [mm]\in[/mm] [0,1]: f(x) = y. Also ist h surjektiv.
>  
> Das ist O.K.
>  >  
> > [mm]"\Leftarrow":[/mm] Sei h surjektiv. Da h monoton ist, besitzt h
> > höchstens Sprungstellen als Unstetigkeitsstellen. Da aber
> > h surjektiv ist, ist dies nicht möglich. Also ist h
> > stetig.
> >
> > Stimmt das so? Wie ist es bei der zweiten Implikation? Ist
> > das nicht zu unmathematisch notiert?
>  
> Es ist vor allem nicht begründet !
>  
> Wir machen einen Widerspruchsbeweis: sei [mm]x_0 \in[/mm] [0,1].
> Annahme: h ist in [mm]x_0[/mm] nicht stetig. Dann haben wir:
>  
> (1) [mm]\limes_{x \to x_0+0}h(x) \ne h(x_0)[/mm]
>  
> oder
>  
> (2) [mm]\limes_{x \to x_0-0}h(x) \ne h(x_0)[/mm]
>  
> (Falls [mm]x_0 \in \{0,1 \}[/mm], so gilt natürlich entweder (1)
> oder (2)).
>
> Es gelte etwa (2) (der weitere Beweis für denFall (1) geht
> genauso)
>  
> Dann gilt:
>  
> [mm]L:= \limes_{x \to x_0-0}h(x)
>  
> Frage an Dich: warum gilt das ?

Weil h monoton ist.

> Nun betrachte das Intervall [mm]I:=(L, h(x_0))[/mm]. Es ist
>
>
> (3)    [mm]I \subset [a,b]=h([0,1])[/mm]
>  
> So, nun nenne mir eine von den obigen Zeilen, die (3)
> widerspricht.

  h ist monoton und nicht stetig.

> FRED
>  >  
> > LG loriot95
>  

Ist das nun so richtig?

LG Loriot95

Bezug
                                        
Bezug
Beweis stetigkeit, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Mi 16.03.2011
Autor: fred97


>
> > > Vielen Dank für deine Hilfe. Habe es jetzt noch Mal
> > > probiert. Hoffe so ist es nun richtig:
>  >  >  
> > > [mm]"\Rightarrow":[/mm] Sei h stetig [mm]\Rightarrow[/mm] h nimmt jeden Wert
> > > zwischen h(0) und h(1) an (ZWS) [mm]\Rightarrow \forall[/mm] y [mm]\in[/mm]
> > > [a,b] [mm]\exists[/mm] x [mm]\in[/mm] [0,1]: f(x) = y. Also ist h surjektiv.
>  >  
> > Das ist O.K.
>  >  >  
> > > [mm]"\Leftarrow":[/mm] Sei h surjektiv. Da h monoton ist, besitzt h
> > > höchstens Sprungstellen als Unstetigkeitsstellen. Da aber
> > > h surjektiv ist, ist dies nicht möglich. Also ist h
> > > stetig.
> > >
> > > Stimmt das so? Wie ist es bei der zweiten Implikation? Ist
> > > das nicht zu unmathematisch notiert?
>  >  
> > Es ist vor allem nicht begründet !
>  >  
> > Wir machen einen Widerspruchsbeweis: sei [mm]x_0 \in[/mm] [0,1].
> > Annahme: h ist in [mm]x_0[/mm] nicht stetig. Dann haben wir:
>  >  
> > (1) [mm]\limes_{x \to x_0+0}h(x) \ne h(x_0)[/mm]
>  >  
> > oder
>  >  
> > (2) [mm]\limes_{x \to x_0-0}h(x) \ne h(x_0)[/mm]
>  >  
> > (Falls [mm]x_0 \in \{0,1 \}[/mm], so gilt natürlich entweder (1)
> > oder (2)).
> >
> > Es gelte etwa (2) (der weitere Beweis für denFall (1) geht
> > genauso)
>  >  
> > Dann gilt:
>  >  
> > [mm]L:= \limes_{x \to x_0-0}h(x)
>  >  
> > Frage an Dich: warum gilt das ?
>   Weil h monoton ist.

.............  monoton wachsend....



> > Nun betrachte das Intervall [mm]I:=(L, h(x_0))[/mm]. Es ist
> >
> >
> > (3)    [mm]I \subset [a,b]=h([0,1])[/mm]
>  >  
> > So, nun nenne mir eine von den obigen Zeilen, die (3)
> > widerspricht.
>    h ist monoton und nicht stetig.


Nein. Wir haben einen Widerspruch zu

                    [mm]L:= \limes_{x \to x_0-0}h(x)


FRED

> > FRED
>  >  >  
> > > LG loriot95
> >  

>
> Ist das nun so richtig?
>  
> LG Loriot95


Bezug
                                                
Bezug
Beweis stetigkeit, surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Mi 16.03.2011
Autor: Loriot95


> >
> > > > Vielen Dank für deine Hilfe. Habe es jetzt noch Mal
> > > > probiert. Hoffe so ist es nun richtig:
>  >  >  >  
> > > > [mm]"\Rightarrow":[/mm] Sei h stetig [mm]\Rightarrow[/mm] h nimmt jeden Wert
> > > > zwischen h(0) und h(1) an (ZWS) [mm]\Rightarrow \forall[/mm] y [mm]\in[/mm]
> > > > [a,b] [mm]\exists[/mm] x [mm]\in[/mm] [0,1]: f(x) = y. Also ist h surjektiv.
>  >  >  
> > > Das ist O.K.
>  >  >  >  
> > > > [mm]"\Leftarrow":[/mm] Sei h surjektiv. Da h monoton ist, besitzt h
> > > > höchstens Sprungstellen als Unstetigkeitsstellen. Da aber
> > > > h surjektiv ist, ist dies nicht möglich. Also ist h
> > > > stetig.
> > > >
> > > > Stimmt das so? Wie ist es bei der zweiten Implikation? Ist
> > > > das nicht zu unmathematisch notiert?
>  >  >  
> > > Es ist vor allem nicht begründet !
>  >  >  
> > > Wir machen einen Widerspruchsbeweis: sei [mm]x_0 \in[/mm] [0,1].
> > > Annahme: h ist in [mm]x_0[/mm] nicht stetig. Dann haben wir:
>  >  >  
> > > (1) [mm]\limes_{x \to x_0+0}h(x) \ne h(x_0)[/mm]
>  >  >  
> > > oder
>  >  >  
> > > (2) [mm]\limes_{x \to x_0-0}h(x) \ne h(x_0)[/mm]
>  >  >  
> > > (Falls [mm]x_0 \in \{0,1 \}[/mm], so gilt natürlich entweder (1)
> > > oder (2)).
> > >
> > > Es gelte etwa (2) (der weitere Beweis für denFall (1) geht
> > > genauso)
>  >  >  
> > > Dann gilt:
>  >  >  
> > > [mm]L:= \limes_{x \to x_0-0}h(x)
>  >  >  
> > > Frage an Dich: warum gilt das ?
>  >   Weil h monoton ist.
>
> .............  monoton wachsend....
>  
>
>
> > > Nun betrachte das Intervall [mm]I:=(L, h(x_0))[/mm]. Es ist
> > >
> > >
> > > (3)    [mm]I \subset [a,b]=h([0,1])[/mm]
>  >  >  
> > > So, nun nenne mir eine von den obigen Zeilen, die (3)
> > > widerspricht.
>  >    h ist monoton und nicht stetig.
>
>
> Nein. Wir haben einen Widerspruch zu
>  
> [mm]L:= \limes_{x \to x_0-0}h(x)
>  

Wieso denn das? Das verstehe ich nicht.Der Grenzwert nährt sich von unten und ist kleiner als [mm] h(x_0). [/mm] D.h doch das er monoton wachsend ist, genauso wie das gesamte Intervall [a,b]. Weshalb ist das nun ein Widerspruch?

>
> FRED
>  > > FRED

>  >  >  >  
> > > > LG loriot95
> > >  

> >
> > Ist das nun so richtig?
>  >  
> > LG Loriot95
>  


Bezug
                                                        
Bezug
Beweis stetigkeit, surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mi 16.03.2011
Autor: fred97


> > >
> > > > > Vielen Dank für deine Hilfe. Habe es jetzt noch Mal
> > > > > probiert. Hoffe so ist es nun richtig:
>  >  >  >  >  
> > > > > [mm]"\Rightarrow":[/mm] Sei h stetig [mm]\Rightarrow[/mm] h nimmt jeden Wert
> > > > > zwischen h(0) und h(1) an (ZWS) [mm]\Rightarrow \forall[/mm] y [mm]\in[/mm]
> > > > > [a,b] [mm]\exists[/mm] x [mm]\in[/mm] [0,1]: f(x) = y. Also ist h surjektiv.
>  >  >  >  
> > > > Das ist O.K.
>  >  >  >  >  
> > > > > [mm]"\Leftarrow":[/mm] Sei h surjektiv. Da h monoton ist, besitzt h
> > > > > höchstens Sprungstellen als Unstetigkeitsstellen. Da aber
> > > > > h surjektiv ist, ist dies nicht möglich. Also ist h
> > > > > stetig.
> > > > >
> > > > > Stimmt das so? Wie ist es bei der zweiten Implikation? Ist
> > > > > das nicht zu unmathematisch notiert?
>  >  >  >  
> > > > Es ist vor allem nicht begründet !
>  >  >  >  
> > > > Wir machen einen Widerspruchsbeweis: sei [mm]x_0 \in[/mm] [0,1].
> > > > Annahme: h ist in [mm]x_0[/mm] nicht stetig. Dann haben wir:
>  >  >  >  
> > > > (1) [mm]\limes_{x \to x_0+0}h(x) \ne h(x_0)[/mm]
>  >  >  >  
> > > > oder
>  >  >  >  
> > > > (2) [mm]\limes_{x \to x_0-0}h(x) \ne h(x_0)[/mm]
>  >  >  >  
> > > > (Falls [mm]x_0 \in \{0,1 \}[/mm], so gilt natürlich entweder (1)
> > > > oder (2)).
> > > >
> > > > Es gelte etwa (2) (der weitere Beweis für denFall (1) geht
> > > > genauso)
>  >  >  >  
> > > > Dann gilt:
>  >  >  >  
> > > > [mm]L:= \limes_{x \to x_0-0}h(x)
>  >  >  >  
> > > > Frage an Dich: warum gilt das ?
>  >  >   Weil h monoton ist.
> >
> > .............  monoton wachsend....
>  >  
> >
> >
> > > > Nun betrachte das Intervall [mm]I:=(L, h(x_0))[/mm]. Es ist
> > > >
> > > >
> > > > (3)    [mm]I \subset [a,b]=h([0,1])[/mm]
>  >  >  >  
> > > > So, nun nenne mir eine von den obigen Zeilen, die (3)
> > > > widerspricht.
>  >  >    h ist monoton und nicht stetig.
> >
> >
> > Nein. Wir haben einen Widerspruch zu
>  >  
> > [mm]L:= \limes_{x \to x_0-0}h(x)
>  >  
> Wieso denn das? Das verstehe ich nicht.

   Es ist [mm] $L
Mach Dir eine Skizze der obigen Situation.

> Der Grenzwert nährt
> sich von unten und ist kleiner als [mm]h(x_0).[/mm] D.h doch das er
> monoton wachsend ist,

Hä, der Grenzwert L ist eine Zahl, mehr nicht

> genauso wie das gesamte Intervall
> [a,b].

Nochmal hä ?   [a,b] ist nicht monoton.


FRED

Weshalb ist das nun ein Widerspruch?

> >
> > FRED
>  >  > > FRED

>  >  >  >  >  
> > > > > LG loriot95
> > > >  

> > >
> > > Ist das nun so richtig?
>  >  >  
> > > LG Loriot95
> >  

>  


Bezug
                                                                
Bezug
Beweis stetigkeit, surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 Mi 16.03.2011
Autor: Loriot95

Werde mir das noch Mal genau durch den Kopf gehen lassen. Jedenfalls vielen Dank für deine Hilfe und Geduld mit mir.

LG Loriot95

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]