www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Beweis von Beträgen
Beweis von Beträgen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Do 14.11.2013
Autor: hamade9

Aufgabe
Beweisen Sie folgende Aussage.
  Für alle a [mm] \in \IR [/mm] und b [mm] \in \IR [/mm] gilt
      | |a| - |b| | [mm] \le [/mm] |a - b| [mm] \le [/mm] |a| + |b|

Muss ich hier jeden fall durchgehen? Also einmal a und b positiv... dann ab und b neg... und beide jeweils einmal neg.? Oder gibt es hier eine  anderen Ansatz?

Danke für eure Hilfe


Schöne grüße Ibo

        
Bezug
Beweis von Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Do 14.11.2013
Autor: fred97


> Beweisen Sie folgende Aussage.
>    Für alle a [mm]\in \IR[/mm] und b [mm]\in \IR[/mm] gilt
>        | |a| - |b| | [mm]\le[/mm] |a - b| [mm]\le[/mm] |a| + |b|
>  Muss ich hier jeden fall durchgehen? Also einmal a und b
> positiv... dann ab und b neg... und beide jeweils einmal
> neg.? Oder gibt es hier eine  anderen Ansatz?


Betrachten wir zuerst die Ungleichung

(1)  |a-b| [mm] \le [/mm] |a|+|b|.

Was wir benötigen ist:

(2)  [mm] \pm [/mm] x [mm] \le [/mm] |x|  für jedes x [mm] \in \IR [/mm]

(das folgt sofort aus der Def. des Betrags).

Zu (1):

Fall 1: a+b [mm] \ge [/mm] 0. Dann: |a+b|=a+b [mm] \le|a|+|b| [/mm] (hier wurde (2) benutzt.)

Fall 2: a+b<0. Versuchs Du nun.

Zu

(3)   | |a| - |b| | [mm]\le[/mm] |a - b| :

Es ist |a|=|a-b+b| [mm] \le [/mm] |a-b| +|b| (nach (1)).

Also: |a|-|b| [mm] \le [/mm] |a-b|

Jetzt zeige Du:  |b|-|a| [mm] \le [/mm] |a-b|.

Wenn Du das geschafft hast, bist Du fertig mit (3). Ist Dir klar, warum ?

FRED

>  
> Danke für eure Hilfe
>  
>
> Schöne grüße Ibo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]