Beweis zu Maßen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:00 Mi 11.11.2020 | Autor: | Flowbro |
Aufgabe | Es sei f : Z → [0, ∞] eine Funktion und P(Z) bezeichne die Potenzmenge von Z. Zeigen Sie, dass durch [mm] $\mu_{f}$ [/mm] : P(Z) → [0, ∞] mit [mm] $\mu_{f}$(A) [/mm] := [mm] \summe_{w\in A}^{} [/mm] f(w) (A [mm] $\in$ [/mm] P(Z)) ein Maß auf (Z,P(Z)) definiert ist.
Zeigen Sie außerdem: Ist ν ein Maß auf (Z,P(Z)), so existiert eine Funktion g : Z → [0, ∞] mit ν(A) = [mm] $\summe_{w\in A}^{}$ [/mm] g(w) (A [mm] $\in$ [/mm] P(Z)) |
Hallo Forum,
bei obiger Aufgabe habe ich leider so gar keine Idee, wie ich an den Beweis drangehen soll.
Für die Existenz eines Maßes zu belegen muss man ja eigentlich nur zeigen, dass [mm] $\mu(\emptyset)$=0 [/mm] ist und, dass [mm] $\mu(\bigcup_{n\in N}^{}A_{n})=\summe_{n\in N}^{}\mu(A_{n}) [/mm] für paarweise disjunte Folgen [mm] $A_{n}$ [/mm] gilt oder?
|
|
|
|
Hiho,
> Es sei f : Z → [0, ∞] eine Funktion
nutze doch bitte den Formeleditor.
Ich vermute mal, du meinst hier: $f: [mm] \IZ \to [0,\infty]$
[/mm]
Für beliebige Mengen $Z$ ist das nämlich falsch…
> Für die Existenz eines Maßes zu belegen muss man ja
> eigentlich nur zeigen, dass [mm]$\mu(\emptyset)$=0[/mm] ist und,
> dass [mm]$\mu(\bigcup_{n\in N}^{}A_{n})=\summe_{n\in N}^{}\mu(A_{n})[/mm]
> für paarweise disjunte Folgen [mm]$A_{n}$[/mm] gilt oder?
Korrekt.
Also: Zeige das.
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:10 Fr 13.11.2020 | Autor: | Flowbro |
Erstmal danke @Gonozal_IX für deine Antwort. Am Formeleditor habe ich mich schon öfters probiert, komme aber bis heute nicht so richtig klar damit :)
Genau in dem Punkt, die beiden Voraussetzungen für ein Maß auf die Aufgabe anzuwenden, habe ich Probleme und benötige diesbezüglich Hilfe.
Bei [mm] $\mu (\emptyset)$ [/mm] müsste man ja daraus schließen, dass die dahinterbefindliche Summe =0 ist , was an sich ja auch logisch ist, da man in diesem Fall über das [mm] $\omega \in \emptyset$ [/mm] aufsummiert.
Nun komme ich bei [mm] $\mu(\bigcup_{n\in N}^{}A_{n})=\summe_{n\in N}^{}\mu(A_{n}) [/mm] $ aber wirklich nicht weiter...
|
|
|
|
|
Hiho,
> Bei [mm]\mu (\emptyset)[/mm] müsste man ja daraus schließen, dass
> die dahinterbefindliche Summe =0 ist , was an sich ja auch
> logisch ist, da man in diesem Fall über das [mm]\omega \in \emptyset[/mm]
> aufsummiert.
Ja, das ist eine definitionssache…
> Nun komme ich bei [mm]\mu(\bigcup_{n\in N}^{}A_{n})=\summe_{n\in N}^{}\mu(A_{n})[/mm] aber wirklich nicht weiter...
Na dann schreib das doch erst mal sauber auf, was zu zeigen ist!
Überlege dann: Taucht jeder Summand der einen Seite auch auf der anderen auf?
Kann man daraus schließen, das beide Seiten gleich sind?
In welchem Fall ja, in welchem nicht?
Gruß,
Gono
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:03 Sa 14.11.2020 | Autor: | Flowbro |
Genau beim sauber Aufschreiben des zweiten Schrittes fangen meine Probleme ja schon an, mir ist nicht genau klar, wie ich $ [mm] \mu(\bigcup_{n\in N}^{}A_{n})=\summe_{n\in N}^{}\mu(A_{n}) [/mm] $ hier konkret angeben kann um damit schlussendlich die Behauptung zu zeigen.
|
|
|
|
|
Hiho,
> Genau beim sauber Aufschreiben des zweiten Schrittes fangen meine Probleme ja schon an, mir ist nicht genau klar, wie ich [mm]\mu(\bigcup_{n\in N}^{}A_{n})=\summe_{n\in N}^{}\mu(A_{n})[/mm] hier konkret angeben kann um damit schlussendlich die Behauptung zu zeigen.
Wie wäre es mit: Definition einsetzen?
Es ist: [mm] $\mu(\bigcup_{n\in N} A_{n}) [/mm] = [mm] \summe_{w\in \bigcup\limits_{n\in N} A_{n}} [/mm] f(w)$
Damit ist also zu zeigen:
[mm] $\summe_{w\in \bigcup\limits_{n\in N} A_{n}} [/mm] f(w) = [mm] \summe_{n\in N} \summe_{w\in A_{n}} [/mm] f(w)$
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:35 So 15.11.2020 | Autor: | Flowbro |
Ok danke dir. Ich setzte mich gleich nochmal dran und hoffe, dass ich die Aufgabe dann soweit gelöst bekomme. Wenn es Probleme gibt melde ich mich nochmal :)
|
|
|
|