Bilanzgleichung < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Bestimmen Sie die Bilanzgleichungen für das elektrische Feld [mm] \vec{E(z,t)} [/mm] und das magnetische Feld [mm] \vec{B(z,t)}
[/mm]
(mit n(s) beliebige differenzierbare und skalare Funktion, [mm] c=\frac{1}{\sqrt{\varepsilon_{0}\mu_{0}}},
[/mm]
[mm] \vec{E}=n(z [/mm] − [mm] ct)\vec{e_{x}} [/mm] und [mm] \vec{B}=\frac{1}{c}n(z [/mm] − [mm] ct)\vec{e_{y}}.
[/mm]
Nutzen Sie dabei die Komponentenschreibweise für Vektoren und Tensoren.
a) Zeigen Sie, dass [mm] \vec{E} [/mm] und [mm] \vec{B} [/mm] die Maxwell’schen Gleichungen füur [mm] \rho=0 [/mm] und [mm] \vec{j}=0 [/mm] erfüllt.
b) Bestimmen Sie die Energiedichte u, den Poynting Vektor [mm] \vec{S} [/mm] und den Maxwell’schen Spannungstensor T des gegebenen elektromagnetischen Feldes.
c) Zeigen Sie die Energiebilanz [mm] u'+div\vec{S}=0. [/mm] (dabei sei u' die ableitung nach der Zeit also u Punkt, wusste nicht, wie ich das hier einfügen kann)
d) Zeigen Sie die Impulsbilanz [mm] \frac{1}{c^{2}}\vec{S}'+DivT=0.
[/mm]
e) Zusatzaufgabe Beweisen Sie die Relation
[mm] Div\vec{a}(r)\otimes\vec{b}(r)=(div\vec{a})\vec{b}+\vec{a}grad\vec{b}). [/mm] |
also prinzipiell konnte ich alle größen aus b) berechnen, hoffe dass ich das richtig gemacht hab. nun wollte ich dann die restlichen aufgaben damit lösen, allerdings macht mir das ableiten dabei schwierigkeiten. wenn ich jetzt z.b. die divergenz von [mm] \vec{S} [/mm] bilde, wie leite ich denn n(z-ct) nach x,y, und z ab, bzw wie nach t.
ich hätte jetzt gedacht, dass die ableitungen nach x und y verschwinden, da n ja nicht davon abhängt und nach der Zeit würde ich erhalten: -c*n'(z-ct). wie leite ich denn nach z ab??
mfg piccolo
|
|
|
|
[mm] \nu [/mm] = [mm] \nu(s) [/mm] = [mm] \nu(z-ct) [/mm] - Das Argument der Funktion ist in diesem Falle also z-ct. D.h. das Differenzieren nach den Ortskoordinaten, im Folgenden für x gezeigt, sieht wie folgt aus:
[mm] \bruch{\partial \nu}{\partial x}=\bruch{\partial \nu (z-ct)}{\partial (z-ct)}*\bruch{\partial (z-ct)}{\partial x} [/mm] in diesem Fall also gleich Null.
|
|
|
|