www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Bild einer best. Möbius-Fkt
Bild einer best. Möbius-Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild einer best. Möbius-Fkt: Suche Bild einer Teilmenge
Status: (Frage) beantwortet Status 
Datum: 01:22 Do 17.04.2008
Autor: Riesenradfahrrad

Aufgabe
Gegeben:
[mm] T:=\overline{\mathbb C}=\mathbb C \cup \{\infty\}\rightarrow\overline{\mathbb C} [/mm] mit
[mm]T(z):=\frac{z-1}{2z+3}[/mm]

Gesucht: Das Bild von [mm]T[Re(z)>1][/mm] und das Urbild von [mm]T^{-1}[|\omega|<1][/mm]

Hallo,

ich habe die Funktion T schon ein bissl angeschaut und bin mit Hilfe von Maple und einigem Rumprobieren darauf gekommen, dass die Bilder von Geraden, die parallel zur imaginären Achse sind und durch [mm]a\in\mathbb R_{>1}[/mm] gehen, auf Kreise abgebildet werden. Die Mittelpunkte dieser Kreise befinden sich auf der reellen Achse zwischen 0 und 0,5. Man kann sie und die zugehörigen Radien anhand vom Bild vom jeweiligen a bestimmen.
Allerdings hilft mir der dabei entstehende, sehr umfangreiche Term nicht, eine schöne Herleitung herbei zumogeln. Es muss jedoch irgendeine geschickte Termumformung geben, sodass mit z=a+iy, a fest, [mm] y\in\mathbb R[/mm] in T eine Parametergleichung/Implizite Form für einen Kreis zu bekommen ist.

Kann mir jemand bei dieser Herleitung helfen (vorausgesetzt meine bisherigen Überlegungen stimmen überhaupt)?

Vielen Dank im Voraus,
Lorenz

        
Bezug
Bild einer best. Möbius-Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 02:48 Do 17.04.2008
Autor: Marcel

Hallo,

was Du da ansprichst ist ein Satz, der in der Funktionentheorie sehr bekannt ist. Es gibt den Satz der Kreisverwandtschaft bilinearer Funktionen (so bezeichnet man die Möbiustransformationen auch). Er besagt, dass allgemeine Kreislinien in [mm] $\IC$ [/mm] durch bilineare Funktionen auf allg. Kreislinien abgebildet werden. Unter einer allg. Kreislinie in [mm] $\IC$ [/mm] versteht man dann entweder eine Gerade oder eine Kreislinie (d.h. Rand eines Kreises).

Eine allg. Kreislinie läßt sich darstellen durch

[mm] $Ax+By+C(x^2+y^2)+D=0$, [/mm] wobei $A,B,C$ nicht alle Null, wobei $x=Re(z)$ und $y=Im(z)$, man also [mm] $\IC=\IR^2$ [/mm] identifiziert.

Nun geht man hin, und zeigt, dass sich jede bilineare Funktionen als Verknüpfungen von "einfachen" bilinearen Abbildungen, nämlich Drehstreckung, Verschiebung und Stürzung schreiben läßt. Daher genügt es, den Satz für Stürzungen zu beweisen. Und dann ist es fast banal, wenn man dann [mm] $w=\frac{1}{z}=u+i*v$ [/mm] schreibt und dann zeigt, dass dann auch $(u,v)$ auf einer Kreislinie liegt (dabei Fallunterscheidung: $0$ liege auf der (natürlich: Ausgangs-)Kreislinie; $0$ sei nicht auf der Kreislinie). Aber vielleicht geht das ein wenig zu weit...

> Gegeben:
>  [mm]T:=\overline{\mathbb C}=\mathbb C \cup \{\infty\}\rightarrow\overline{\mathbb C}[/mm]
> mit
>  [mm]T(z):=\frac{z-1}{2z+3}[/mm]

Schauen wir doch mal, vll. reicht Dir ja schon das folgende:
[mm] $T(z)=\frac{z-1}{2z+3}=\frac{1}{2}+\frac{z-1}{2z+3}-\frac{1}{2}=\frac{1}{2}+\frac{2z-2-(2z+3)}{2z+3}=\frac{1}{2}-\frac{5}{2z+3}$ [/mm]

Dann kann man $T$ schreiben als:

$T=f [mm] \circ [/mm] g [mm] \circ [/mm] h [mm] \circ [/mm] k$ mit

[mm] $f(z)=\frac{1}{2}+z$, [/mm] $g(z)=-5*z$, [mm] $h(z)=\frac{1}{z}$ [/mm] und $k(z)=2*z+3$

$f$ ist eine Verschiebung, $g$ ist eine (Dreh)-Streckung, $h$ ist eine Stürzung und $k$ ist wieder eine Zusammensetzung aus einer Verschiebung und einer (Dreh-)Streckung.

Jetzt musst Du Dir halt überlegen, ob Dir das reicht, um damit das Bild von [mm] $R:=\{z: Re(z) > 1\}$ [/mm] unter $T$ zu bestimmen:

Was ist k(R)? Was folgt daraus für $h(k(R))$ usw.

Und ich hoffe mal, dass Du analog für das Urbild von [mm] $\mathcal{D}:=\{z \in \IC: |z|<1\}$ [/mm] vorgehst:

Was ist [mm] $f^{-1}(\mathcal{D})$? [/mm] Was folgt dann für [mm] $g^{-1}(f^{-1}(\mathcal{D}))$... [/mm]

(Beachte: $(f [mm] \circ g)^{-1}(M)=g^{-1}(f^{-1}(M))$, [/mm] und wenn Du z.B. $f [mm] \circ [/mm] g [mm] \circ [/mm] h [mm] \circ [/mm] k$ hast, dreht sich quasi die Reihenfolge der Funktionen um und überall kommt ein hoch (-1) dran, für das Urbild der Verknüpfungen zu "errechnen".)

P.S.:
Was ich oben schonmal angesprochen und benutzt habe:
Eine jede Möbiustransformation $z [mm] \mapsto \frac{az+b}{cz+d}$ [/mm] läßt sich als Verknüpfung der 3 oben angesprochenen "einfachen" Möbiustransformationen schreiben:
Im Falle $c=0$ solltest Du das sehen, im Falle $c [mm] \not=0$ [/mm] kommst Du (mit analogen Umformungen, wie ich so oben gemacht habe) zu

[mm] $\frac{az+b}{cz+d}=\frac{a}{c}-\frac{ad-bc}{c}*\frac{1}{cz+d}$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Bild einer best. Möbius-Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:49 Sa 19.04.2008
Autor: Riesenradfahrrad

Hallo Marcel,

herzlichen Dank für die schnelle Antwort, hat mir sehr geholfen!

Gruß,
Lorenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]