Bild einer linearen Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei [mm] \varphi [/mm] : [mm] {\IR}^3 \to {\IR}^3 [/mm] eine [mm] \IR-lineare [/mm] Abbildung mit
[mm] \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} [/mm] , [mm] \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} [/mm] , [mm] \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} [/mm] .
(a) Geben Sie das Bild [mm] \varphi [/mm] des Vektors [mm] \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix} [/mm] an.
(b) Geben sie einen Vektor v [mm] \in {\IR}^3 [/mm] an mit Bild [mm] \varphi(v) \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix}.
[/mm]
(c) Geben Sie die folgenden Dimensionen an:
[mm] dim(Bild(\varphi)) [/mm] =
[mm] dim(Kern(\varphi)) [/mm] = |
Hallo,
ich bereite mich gerade für die LinAlg-Klausur im 2. Semester vor und komme bei dieser Aufgabe auf keinen grünen Zweig. Mir fehlt ein kompletter Ansatz.
Ich habe bereits versucht, mir klarzumachen, wie das ganze räumlich aussieht. Ist wahrscheinlich nicht nötig, aber ich hatte gehofft, dass es dadurch etwas klarer wird.
Ich habe die Lösungen da, allerdings sind diese ohne jeglichen Weg, nur das Ergebnis. Wie ich es auch probiert habe, ich komme nicht auf die Ergebnisse.
Wenn mir jemand einen Denkanstoß geben könnte, wäre das schonmal etwas. Dann könnte ich weiter probieren.
Mit freundlichen Grüßen,
Bananenmann86
P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi,
aus den Abbildungsbeispielen kannst du eine Matrix bzgl der Standardbasis aufstellen.
[mm] $e_1= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mapsto \red{\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}} [/mm] $
[mm] $e_2+e_1 [/mm] = [mm] \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} [/mm] $
[mm] $e_3 +e_2+e_1 =\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} [/mm] $
Jetzt kennst du das Bild von [mm] e_1 [/mm] und kannst das Bild von [mm] e_2,e_3 [/mm] berechnen.
In den Spalten der Matrix stehen die Bilder der Basis. Für [mm] e_1 [/mm] ist das trivial.
Für [mm] e_2 [/mm] ist [mm] :$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} [/mm] = [mm] A(e_1 [/mm] + [mm] e_2) [/mm] = [mm] Ae_1 +Ae_2=\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}+Ae_2 \gdw\blue{\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}-\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}}=\blue{Ae_2}$
[/mm]
Für [mm] e_3 [/mm] analog.
Zum Vergleich komme ich auf die Abbildungsmatrix bzgl. der Standardbasis:
[mm] $A=\pmat{\red{0}&\blue{1}&0\\\red{-2}&\blue{0}&1\\\red{0}&\blue{3}&0}$
[/mm]
a) $ [mm] \varphi =\pmat{0&1&0\\-2&0&1\\0&3&0} \cdot \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix} [/mm] $
b) [mm] $\begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix} =\pmat{0&1&0\\-2&0&1\\0&3&0} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
[/mm]
c) $ [mm] dim(Bild(\varphi)) [/mm] = rg(A)$
$dim(V) = [mm] dim(Bild(\varphi)) [/mm] + [mm] dim(Kern(\varphi))$
[/mm]
|
|
|
|