Bildvektoren bei linearen Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:03 Di 03.01.2012 | Autor: | tomtom10 |
Aufgabe | Die lineare Selbstabbildung [mm] \delta [/mm] : [mm] \IR^3 ->\IR^3 [/mm] werde hinsichtlich der kanonischen Basis durch die Matrix M= [mm] \pmat{ a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}} [/mm] beschrieben
Der Vektor x besitzt bezüglich der kanonsichen Basis die Koordinaten [mm] \vektor{x1\\x2\\x3} [/mm] Berechnen Sie die Bilder des Vektors [mm] \delta [/mm] (x) |
Ist dann [mm] \delta (\vektor{x1 \\ x2 \\x3}) [/mm] = [mm] \vektor{ x1*a_{11} + x2* a_{12}+ x3*a_{13}\\ x1*a_{21} + x2* a_{22}+ x3*a_{23}\\ x1*a_{31} + x2* a_{32}+ x3*a_{33}} [/mm] ?
|
|
|
|
Hallo,
> Die lineare Selbstabbildung [mm]\delta[/mm] : [mm]\IR^3 ->\IR^3[/mm] werde
> hinsichtlich der kanonischen Basis durch die Matrix M=
> [mm]\pmat{ a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}}[/mm]
> beschrieben
>
> Der Vektor x besitzt bezüglich der kanonsichen Basis die
> Koordinaten [mm]\vektor{x1\\x2\\x3}[/mm] Berechnen Sie die Bilder
> des Vektors [mm]\delta[/mm] (x)
> Ist dann [mm]\delta (\vektor{x1 \\ x2 \\x3})[/mm] = [mm]\vektor{ x1*a_{11} + x2* a_{12}+ x3*a_{13}\\ x1*a_{21} + x2* a_{22}+ x3*a_{23}\\ x1*a_{31} + x2* a_{32}+ x3*a_{33}}[/mm]
> ?
Ja.
gruss
matthias
|
|
|
|