Bilinearformen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:17 So 13.06.2010 | Autor: | Ayame |
Aufgabe | Es seien [mm] \beta_{1}: [/mm] XxX [mm] \to [/mm] K und [mm] \beta_{2}: [/mm] XxX [mm] \to [/mm] K zwei symmetrische Bilinearformen. Man zeige für den Fall, dass im Körper K Gilt :
1+1 [mm] \not= [/mm] 0 die folgende Aussaage :
Gilt [mm] \beta_{1}(\vec{a},\vec{a}) [/mm] = [mm] \beta_{2}(\vec{a},\vec{a}) [/mm] für alle [mm] \vec{a} \in [/mm] X, so folgt [mm] \beta_{1}= \beta_{2}.
[/mm]
|
die letztere Aussage ist glaube ich ziemlich trivial :
[mm] \beta_{1}(\vec{a},\vec{a}) [/mm] = [mm] \vec{a}*\vec{a} [/mm] = [mm] (a_{1},...,a_{n}) [/mm] * [mm] \pmat{ b_{1}*b_{1} & ... & b_{1}*b_{n} \\ ... & ... &...\\ b_{n}*b_{1}& ...& b_{b}*b_{n} } *\vektor{ a_{1}\\ ...\\ a_{n}} [/mm] , wobei [mm] (b_{1},...,b_{n}) [/mm] Basis von X ist.
hier müsste ich dann irgendwie die Gleichheit zu [mm] \beta_{2} [/mm] zeigen.
oder ?
Ich versteh aber nicht ganz wie die Vorraussetzung des Körpers :1+1 [mm] \not= [/mm] 0 da eine Rolle spielt. oder wie ich das einsetzten soll.
kann mir jemand etwas helfen ?
|
|
|
|
> hier müsste ich dann irgendwie die Gleichheit
ist schon gut. Bitte beachte das noch keine Aussage über [mm]\beta_{1}(\vec{a},\vec{b})= \beta_{2}(\vec{a},\vec{b}),a\neq b[/mm] da steht.
> [mm]\beta_{1}(\vec{a},\vec{a})= \beta_{2}(\vec{a},\vec{a})[/mm] für alle [mm]\vec{a} \in[/mm] X, so
Die Aussage gilt auch für die Basisvektoren. Dann holt dir [mm] $\beta_{1}(\vec{e_i},\vec{e_i})$ [/mm] nur den ii Eintrag der darstellenden Matrix von [mm] $\beta_{1}$. [/mm] Du weißt also nur, dass die Einträge auf der Hauptdiagonalen übereinstimmen.
Dennoch weißt du auch
$(x+y,x+y)=(x,x)+(y,y)+2(x,y)$
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:37 So 13.06.2010 | Autor: | Ayame |
> Dann holt dir
> [mm]\beta_{1}(\vec{e_i},\vec{e_{i}})[/mm] nur den ii Eintrag der
> darstellenden Matrix von [mm]\beta_{1}[/mm]. Du weißt also nur,
> dass die Einträge auf der Hauptdiagonalen
> übereinstimmen.
>
> Dennoch weißt du auch
> [mm](x+y,x+y)=(x,x)+(y,y)+2(x,y)[/mm]
Meinst du das so ?:
[mm] \beta_{1}(\vec{e_{i}},\vec{e_{i}})= e_{i} [/mm] * [mm] \pmat{ e_{1}e_{1} & ...&e_{1}e_{i}&...&e_{1}e_{n} \\ ... & ...&....&....&....\\e_{i}e_{1}&....& e_{i}e_{i} &...&e_{i}e_{n}\\...&...&...&...&...\\e_{n}e_{1}&...&e_{n}e_{i}&...&e_{n}e_{n}} *e_{i} [/mm] = [mm] e_{i}^{4} [/mm] ?
Ich versteh nicht ganz wie ich das machen soll.
|
|
|
|
|
Deine darstellen Matrix ist ja [m]B_i:= \pmat{ \beta_i(e_1,e_1) & \ldots & \beta_i(e_1,e_n) \\ \vdots&\ddots &\vdots \\ \beta_i(e_n,e_1) & \ldots & \beta_i(e_n,e_n) }[/m]
Da ja [mm] $\beta_1(a,a)=\beta_2(a,a)$ [/mm] gilt, sind auf jedem Fall die Einträge auf der Hauptdiagonalen der Matrizen [mm] $B_1,B_2$ [/mm] gleich. Denn du erhälst durch direktes ausrechnen nur den ii-Eintrag durch [mm] $\beta_1(e_i,e_i)$ [/mm] wobei [mm] $e_i$ [/mm] ein Basisvektor ist.
Du sollst aber zeigen, dass auch [mm] $\beta_1(a,b)=\beta_2(a,b)$ [/mm] für $a=b$ und sogar für [mm] $a\neq [/mm] b$. Wir interessieren uns, ob die Einträge neben der Hauptdiagonale und gleich sein müssen oder nicht.
Da wir eine symmetrische Billinearform haben wissen wir aber auch
[mm]\beta_1(c,c)+\beta_1(d,d)+2\cdot \beta_1(c,d)=\beta_1(c+d,c+d)=\beta_2(c+d,c+d)=\beta_2(c,c)+\beta_2(d,d)+2\cdot \beta_2(c,d)[/mm]
Jetzt kommt auch die Charakteristik vom Körper ins Spiel, denn wg [mm] $char(K)\neq [/mm] 2$ fällt jeweils der interessante Term nicht weg.
|
|
|
|