www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Binomial/Poisson-Verteilung
Binomial/Poisson-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomial/Poisson-Verteilung: Frage
Status: (Frage) beantwortet Status 
Datum: 17:07 Mo 30.05.2005
Autor: Deluxe

Seien X1,.....Xn stochastisch unabhängig Y ist Poisson( [mm] \lambda) [/mm] verteilt.
und die Xi jeweils B(1,p)

nun soll gezeigt werden, dass Z Poisson(p [mm] \lambda) [/mm] verteilt ist
mit
Z= X1 + X2 +....+Xy, falls Y = 1,2,3....
bzw.
Z = 0 falls Y=0

daraus ergibt sich ja P{X1+.....Xy=k}= [mm] \summe_{n=1}^{ \infty} [/mm] P{X1+...+Xy=k|Y=n} * P{Y=n} + P{Z=k|Y=0}*P{Y=0}

formt man nun um so kommt:
[mm] \summe_{n=1}^{\infty} [/mm] P{X1+....Xn=k}*P{Y=n}+P{Z=0|Y=0} *P{Y=0} raus

da P{Z=0|Y=0} = 1 folgt wieder:
[mm] \summe_{n=1}^{\infty} [/mm] P{X1+....Xn=k}*P{Y=n}+ P{Y=0}
bzw.
[mm] \summe_{n=1}^{\infty} \vektor{n \\ k}p^k(1-p)^n-k [/mm] * [mm] e^-\lambda [/mm]  * [mm] \bruch {\lambda^n}{n!} [/mm] + [mm] e^-\lambda [/mm]
raus.
Und an dieser Stelle hänge ich. Habe ich beim umformen was falsch gemacht? Oder kann mir jemand sagen wie ich weiter umformen muss um später Poisson( [mm] p*\lambda) [/mm] zu bekommen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Binomial/Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 Mi 01.06.2005
Autor: Julius

Hallo!

Du hast alles richtig gemacht! [applaus]

Beachte bitte, das du am Schluss den einzelnen Summanden in die Summe reinziehen kannst und dann die Summe bei $n=k$ beginnen lassen kannst.

Dann erhältst du ab dort:

[mm] $e^{-\lambda} \sum\limits_{n=k}^{\infty} [/mm] {n [mm] \choose [/mm] k [mm] }p^k(1-p)^{n-k} \frac{\lambda^n}{n!}$ [/mm]

$= [mm] \frac{e^{-\lambda}(\lambda p)^k}{k!} \sum\limits_{n=k}^{\infty} \frac{(1-p)^{n-k}\lambda^{n-k}}{(n-k)!}$ [/mm]

$= [mm] \frac{e^{-\lambda}(\lambda p)^k}{k!} \sum\limits_{n=0}^{\infty} \frac{((1-p)\lambda)^n}{n!}$ [/mm]

$= [mm] \frac{e^{-\lambda}(\lambda p)^k}{k!} \cdot e^{(1-p)\lambda}$ [/mm]

$= [mm] \frac{e^{-\lambda p}(\lambda p)^k}{k!}$, [/mm]

was zu zeigen war.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]