www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Binomialverteilung
Binomialverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Anwendungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 19:38 So 20.02.2005
Autor: SpeedyGonzales

Hab folgende Aufgabe:
In den Teig von 500 Brötchen mischt ein Bäcker 1000 Rosinen. Gib an bei wie vielen Brötchen  man mit 0,1,2... 8 Rosinen rechnen kann.

Ich würde nur gern wissen was in diesem Fall n, k  und  p ist


Vielen Dank im vorraus Speedy

        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 21.02.2005
Autor: Julius

Hallo!

Noch ein Versuch!

Die Formel war eben doch richtig, hoffe ich jedenfalls, nur die Begründung nicht.

Die Wahrscheinlichkeit, dass das $i$-te Brötchen $k$ Rosinen beinhaltet, ist gerade

${1000 [mm] \choose [/mm] k} [mm] \cdot \left( \frac{1}{500} \right)^k \cdot \left( \frac{499}{500} \right)^{1000-k}$, [/mm]

denn jede der tausend Rosinen verteilt sich mit der Wahrscheinlichkeit von [mm] $\frac{1}{500}$ [/mm] auf das $i$-te Brötchen.

Daher ist

$500 [mm] \cdot [/mm] {1000 [mm] \choose [/mm] k} [mm] \cdot \left( \frac{1}{500} \right)^k \cdot \left( \frac{499}{500} \right)^{1000-k}$ [/mm]

die erwartete Anzahl der Brötchen mit $k$ Rosinen (Linearität des Erwartungswertes).

Viele Grüße
Julius

Bezug
                
Bezug
Binomialverteilung: Beispiele
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Mo 21.02.2005
Autor: Julius

Hallo!

Beispielsweise erwarten wir dann

$500 [mm] \cdot [/mm] {1000 [mm] \choose [/mm] 0} [mm] \cdot \left(\frac{1}{500} \right)^0 \cdot \left( \frac{499}{500} \right)^{1000} \approx [/mm] 67,53 [mm] \approx [/mm] 68$

Brötchen mit $0$ Rosinen

$500 [mm] \cdot [/mm] {1000 [mm] \choose [/mm] 1} [mm] \cdot \left(\frac{1}{500} \right)^1 \cdot \left( \frac{499}{500} \right)^{999} \approx [/mm] 135,34 [mm] \approx [/mm] 135$

Brötchen mit $1$ Rosine,

$500 [mm] \cdot [/mm] {1000 [mm] \choose [/mm] 2} [mm] \cdot \left(\frac{1}{500} \right)^2 \cdot \left( \frac{499}{500} \right)^{998} \approx [/mm] 135,47 [mm] \approx [/mm] 135$

Brötchen mit $2$ Rosinen,

$500 [mm] \cdot [/mm] {1000 [mm] \choose [/mm] 3} [mm] \cdot \left(\frac{1}{500} \right)^3 \cdot \left( \frac{499}{500} \right)^{997} \approx [/mm] 90,31 [mm] \approx [/mm] 90$

Brötchen mit $3$ Rosinen,

usw.

Viele Grüße
Julius




Bezug
                        
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Mo 21.02.2005
Autor: SpeedyGonzales

Thx ich hatte bei mir den logischen fehler gemacht nicht mal 500 zu multiplizieren deswegen  habe ich es nicht verstanden


thx  


mfg SPeedy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]