Borelmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:02 So 16.10.2011 | Autor: | kiwibox |
Aufgabe | Entscheiden Sie, welche der folgenden Mengen Borelmengen sind.
a) [mm] \{(x,y) \in \IR^2 | 0 \le y < e^x \}
[/mm]
b) [mm] \{(x,y) \in \IR^2| y \ge x*\chi_{\IQ} (x)\} [/mm] |
Hallo liebes Matheraum-Forum Team,
neues Semester, andere VL, neue Probleme....so fängt das Semester wieder gut an
Meine heutige Frage ist, wie löse ich die Aufgabe gescheit?
Ich hatte mir da bereits Skizzen dazu gemacht.
Zu a) habe ich mir dann auf geschrieben, dass es [mm] \bigcup_{x \in \IR} [x,e^x) [/mm] ist. Mein Problem, [mm] \IR [/mm] ist überabzählbar, und das ist ja meine Borelmenge ja nicht. Was kann ich da tun?
Zu b) [mm] \chi_{\IQ} [/mm] ist bei uns definiert als: [mm] \chi_{E}:=\begin{cases} 1, & \mbox{für x} \in \mbox{E } \\ 0, & \mbox{für x} \in \IR \setminus E \end{cases}
[/mm]
Also wäre das hier in meinem Fall eben, dass [mm] \bigcup_{x \in \IR}[x, x*\chi_{\IQ}]=\bigcup_{x \in \IR \setminus \IQ} [/mm] [x,0] + [mm] \bigcup_{x \in \IQ} [/mm] [x,x] ...nun stehe ich aber wie oben vor dem Problem. Wie zeige ich, dass es eine Borelmenge ist?
Kann mir jemand helfen? Was muss ich nun tun?
LG; Kiwibox
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:49 So 16.10.2011 | Autor: | Helbig |
>
> Meine heutige Frage ist, wie löse ich die Aufgabe
> gescheit?
> Ich hatte mir da bereits Skizzen dazu gemacht.
>
> Zu a) habe ich mir dann auf geschrieben, dass es [mm]\bigcup_{x \in \IR} [x,e^x)[/mm]
> ist. Mein Problem, [mm]\IR[/mm] ist überabzählbar, und das ist ja
> meine Borelmenge ja nicht. Was kann ich da tun?
Dies ist falsch! Die von Dir definierte Menge ist doch eine Teilmenge von [mm] $\IR$ [/mm] und nicht von [mm] $\IR^2$. [/mm] Die Punkte der Menge a) kann man sich zwischen den Graphen der Funktionen $x [mm] \mapsto e^x$ [/mm] und [mm] $x\mapsto [/mm] 0$ veranschaulichen. Und diese Menge kann man sogar als endliche Vereinigung abgeschlossener und offener Mengen bzw. deren Komplemente darstellen.
>
> Zu b) [mm]\chi_{\IQ}[/mm] ist bei uns definiert als:
> [mm]\chi_{E}:=\begin{cases} 1, & \mbox{für x} \in \mbox{E } \\ 0, & \mbox{für x} \in \IR \setminus E \end{cases}[/mm]
>
> Also wäre das hier in meinem Fall eben, dass [mm]\bigcup_{x \in \IR}[x, x*\chi_{\IQ}]=\bigcup_{x \in \IR \setminus \IQ}[/mm]
> [x,0] + [mm]\bigcup_{x \in \IQ}[/mm] [x,x] ...nun stehe ich aber
> wie oben vor dem Problem. Wie zeige ich, dass es eine
> Borelmenge ist?
Auch hier bist Du auf dem Holzweg. Beachte, daß auch die Menge b) Teilmenge von [mm] $\IR^2$ [/mm] ist.
Zerlege die Menge in eine mit [mm] $x\in \IQ$ [/mm] und eine mit [mm] $x\notin\IQ$. [/mm] Die erste ist abzählbare Vereinigung abgeschlossener Mengen und die zweite das Komplement einer
abzählbaren Vereinigung abgeschlossener Mengen.
Viel Erfolg!
Wolfgang
|
|
|
|