Bweis: Quadartische Funktioen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Hi@ all
Schon wieder habe ich tolle Idee: Ich würde gerne einen Beweis erbracht haben, dass die eine jede quadartische Funktion ( vorrausgesetzt a,b und c seinen die Parameter) wirklich den Scheitelpunkt
S(-b/2a | c-(b²/4a) )
hat. Diese Beweis soll OHNE Differentialrechnung erbracht werden. Ich bin mir irgendwie sicher, dass dies nicht möglich ist. Auch die Herleitung der Scheitelpunktkorrdinaten hielft nicht weiter.
Bei ihm habe ich vorrausgesetzt, dass der x-Wert dieses "Symetrietentrums" x(s) und der Abstand zur vermeindlichen Symetrieachse x(a) ist. Dann müsste man vorraussetzetn, dass gilt:
f( x(s) + x(a) ) = f( x(s) - x(a) ) .
Also für immer gleiche Abstände des Grapehn von einem Punkt auf einer Symetrieachse immer gleiche Funktionswerte enstehen. Das ist ja aber lediglich eine Behauptung und so ist auch der resultiernede Scheitelpunkt nicht eindeutig bewiesen!
Was nun? (spannende Frage, hoffe ich!)
Freue mich auf Antworten! Aber wie gesagt, KEINE Differentialrechnung!!!!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gruß
Goldener_Sch.
|
|
|
|
Hallo Goldener_Sch.,
!!
Versuch' es doch mal mit quadratischer Ergänzung ...
Hier mal die ersten Schritte:
[mm] $a*x^2 [/mm] + b*x + c \ = \ 0$
[mm] $a*\left(x^2 + \bruch{b}{a}*x + \bruch{c}{a}\right) [/mm] \ = \ 0$
[mm] $a*\left[x^2 + \bruch{b}{a}*x + \left(\bruch{b}{2a}\right)^2 + \bruch{c}{a} - \left(\bruch{b}{2a}\right)^2\right] [/mm] \ = \ 0$
[mm] $a*\left[\left(x + \bruch{b}{2a}\right)^2 + \bruch{c}{a} - \bruch{b^2}{4a^2}\right] [/mm] \ = \ 0$
Den Rest schaffst Du doch jetzt alleine, oder?
Du kannst es aber auch über die Achsensymmetrie zeigen mit:
[mm] $f\left(-\bruch{b}{2a}\red{+}x\right) [/mm] \ = \ [mm] a*\left(-\bruch{b}{2a}+x\right)^2 [/mm] + [mm] b*\left(-\bruch{b}{2a}+x\right) [/mm] + c \ = \ ...$
Analog: [mm] $f\left(-\bruch{b}{2a}\red{-}x\right) [/mm] \ = \ [mm] a*\left(-\bruch{b}{2a}-x\right)^2 [/mm] + [mm] b*\left(-\bruch{b}{2a}-x\right) [/mm] + c \ = \ ...$
Und dann durch Zusammenfassen die Gleichheit zeigen.
Den y-Wert erhältst Du durch Einsetzen:
[mm] $y_S [/mm] \ = \ [mm] f\left(x_S\right) [/mm] \ = \ [mm] f\left(-\bruch{b}{2a}\right) [/mm] \ = \ [mm] a*\left(-\bruch{b}{2a}\right)^2 [/mm] + [mm] b*\left(-\bruch{b}{2a}\right) [/mm] + c \ = \ ...$
Gruß vom
Roadrunner
|
|
|
|
|
Hallo Roadrunner,
erstmal danke für diese Antwort! Ich sehe durchaus ein, dass man zum Ergebnis:
f(x)=a*(x+b/2a)²+c-b²/4a
!!Da ist dir nen Fehler unterlaufen! Bei dir steht: "(x²+b/2a)²" !"
...kommt.
Ich erkenne deutlich die "Scheitelform" -b/2a und c-b²/4a!
Das jedoch nun ?zufällig? diese Ausdrücke zu stande kommen, sehe ich wohl, aber sind damit die Scheitelpunktkoordinaten bewiesen? WARUM?
Entschuldige vielleicht für die "blöden" Fragen! Ich hatte dieses Thema noch nicht in der Schule und mache dies aus reinem Interesse im Moment ganz alleine. Desswegen an dieser Stelle eine Entschuldigung für Nachfargen auf Dinge, die ich normalerweise wissen sollte!
Und noch ne Sache! Ich raffe den "Formeleditor" nicht! So möchte ich zum Beispiel eine Funktion mit "f" bennen. Wie geht das? Danke für euer Antworten!
Gruß
Goldener_Sch.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:05 Do 11.08.2005 | Autor: | leduart |
Hallo goldener?
> dass man zum Ergebnis:
> f(x)=a*(x+b/2a)²+c-b²/4a
> ...kommt.
>
> Ich erkenne deutlich die "Scheitelform" -b/2a und
> c-b²/4a!
>
> Das jedoch nun ?zufällig? diese Ausdrücke zu stande kommen,
> sehe ich wohl, aber sind damit die Scheitelpunktkoordinaten
> bewiesen? WARUM?
ZUFÄLLIG ist hier nicht, sondern rodrunner hat zielgerichtet auf diese Form hingearbeitet, und sie gilt für jedes a,b,c.
Was ist für dich nun ein "Scheitel" S ? 2 mögliche Antworten:
a) s Ist der höchste oder tiefste Punkt der Kurve
b) die Parallele zur y-Achse durch S ist Symmetrielinie.
zu a): [mm] f(x)=a*(x+b/2a)²+c-b²/4a^{2}
[/mm]
dass [mm] c-b²/4a^{2} [/mm] nur eine Verschiebung von a*(x+b/2a)² nach oben wenn [mm] c-b²/4a^{2}>0 [/mm] oder nach unten, wenn [mm] c-b²/4a^{2}<0 [/mm] siehst du wohl.
bleibt also g(x)=a*(x+b/2a)² wenn a>0 ist [mm] g(x)\ge [/mm] 0 da ein Quadrat immer [mm] \ge [/mm] 0 ist. also ist der kleinste Wert bei (x+b/2a)²=0 oder x=-b/2a.
wenn a<0 folgt genauso g(x) [mm] \le [/mm] 0 also der größte Wert bei (x+b/2a)²=0.
dazu kommt dann noch die feste Verschiebung um [mm] c-b²/4a^{2} [/mm] nach oben bzw. unten!
zu b) Behauptung : g(x)=a*(x+b/2a)² ist symetrisch zu xs=-b/2a.
also g(xs+c)=g(x-c) für beliebiges c . durch einsetzen sieht man
g(xs+c)=g(-b/2a+c)= [mm] a(-b/2a+c+b/2a)^{2}=a*c^{2} [/mm] und
g(xs-c) [mm] =a(-c)^{2}=a*c^{2}. [/mm] Addition von [mm] c-b²/4a^{2} [/mm] ändert an der Gleichheit nix!!
Zufrieden?
Gruss leduart
|
|
|
|