www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Cauchy-Schwarz-Ungleichung
Cauchy-Schwarz-Ungleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Schwarz-Ungleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 23:43 Mi 27.07.2005
Autor: Julio

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es geht um die Cauchy-Schwarz-Ungleichung:
[mm] ||\le\parallel x\parallel *\parallel y\parallel [/mm]

Ich verstehe nicht, warum auf der linken Seite Betragsstriche stehen müssen: Das Skalarprodukt ist doch per Definition positiv definit, d.h. <x,y> kann gar nicht kleiner als null sein. In allen gängigen Beweisen wird immer
[mm] ^{2}\le\parallel x\parallel^{2}*\parallel y\parallel [/mm] ^{2}
gezeigt. Da wie gesagt [mm] \ge [/mm] 0 ist, folgt doch daraus dann
[mm] \le\parallel x\parallel *\parallel y\parallel, [/mm]
also ohne Betrag auf der linken Seite. Oder...?

        
Bezug
Cauchy-Schwarz-Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Do 28.07.2005
Autor: Hanno

Hallo Julio!

Positiv definit heißt lediglich, dass für alle [mm] $x\in [/mm] V$ stets [mm] $\langle x,x\rangle\geq [/mm] 0$ gilt, wobei Gleichheit nur für $x=0$ eintritt. Für [mm] $x,y\in [/mm] V$ und [mm] $x\not= [/mm] y$ kann durchaus [mm] $\langle x,y\rangle [/mm] <0$ gelten.


Liebe Grüße,
Hanno

Bezug
        
Bezug
Cauchy-Schwarz-Ungleichung: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Do 28.07.2005
Autor: MatthiasKr

Hallo,

> Es geht um die Cauchy-Schwarz-Ungleichung:
>  [mm]||\le\parallel x\parallel *\parallel y\parallel[/mm]

Eine sehr wichtige ungleichung!

> Ich verstehe nicht, warum auf der linken Seite
> Betragsstriche stehen müssen...

Mal abgesehen davon, dass das skalarprodukt zweier vektoren durchaus negativ sein kann (siehe hannos post), hast du irgendwie auch recht: zumindest in reellen Vektorräumen stimmt die aussage auch ohne betragsstriche! allerdings ist sie mit betragsstrichen viel stärker, weil man den wert des skalarproduktes gleichzeitig auch 'nach unten' abschätzt.

Sobald man sich in einem komplexen vektorraum befindet, macht die aussage sowieso nur noch mit betragsstrichen sinn, weil auf den komplexen zahlen keine [mm] $\le$-Relation [/mm] definiert ist.

Viele Grüße
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]