Cauchy Produkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo ihr lieben,
ich bin für meine Mathe Klausur am lernen und habe daher nochmal meine Unterlagen zu den Reihen und insbesondere zum Cauchy Produkt herausgekramt..
Ich soll nachweisen, dass das Cauchy-Produkt der konvergenten Reihe [mm] \sum_{n=1}{\infty}\frac{(-1)^{n}}{\wurzel{n}}
[/mm]
mit sich selbst divergiert.
mein Ansatz:
hier können wir das Leibniz Kriterium verwenden. Es muss also nachgewiesen werde, dass die Folge [mm] (-1)^{n} [/mm] * [mm] a_{n} [/mm] monoton fallend ist und gegen 0 konvergiert. [mm] a_{n} [/mm] ist in diesem Fall [mm] =\frac{1}{\wurzel{n}}
[/mm]
wegen [mm] \frac{1}{\wurzel{n+1}} \le \frac{1}{\wurzel{n}} [/mm] ist die Reihe monoton fallend. und Da es zu jedem n [mm] \ge [/mm] N ein N mit N > [mm] \frac{1}{\epsilon^{2}} [/mm] gibt ist die Folge auch eine Nullfolge...
wenn wir nun das Cauchy Produkt bilden erhalten wir:
[mm] \sum_{k=0}{n}\frac{(-1)^{n}}{\wurzel{n}*\wurzel{n-k}} [/mm] = [mm] \sum_{k=0}{n}\frac{(-1)^{n}}{\wurzel{(n)*(n-k)}} [/mm] = [mm] (-1)^{n} [/mm] * [mm] \sum_{k=0}{n}\frac{1}{\wurzel{(n)*(n-k)}}
[/mm]
zu zeigen ist nun, dass das Cauchy Produkt nicht konvergiert:
[mm] |c_{n}|= |(-1)^{n} [/mm] * [mm] \sum_{k=0}{n}\frac{1}{\wurzel{(n)*(n-k)}}| [/mm] = | [mm] \sum_{k=0}{n}\frac{1}{\wurzel{(n)*(n-k)}}| \ge [/mm] | [mm] \sum_{k=0}{n}\frac{1}{\wurzel{n}*\wurzel{n}}| [/mm] = 1
doch was sagt mit das über die Konvergenz aus? Muss [mm] c_{n} [/mm] eine Nullfolge sein? und was heißt mit sich selbst konvergieren?bzw. wie weise ich dies nach?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:39 Sa 04.01.2014 | Autor: | DieAcht |
Hallo,
> Hallo ihr lieben,
> ich bin für meine Mathe Klausur am lernen und habe daher
> nochmal meine Unterlagen zu den Reihen und insbesondere zum
> Cauchy Produkt herausgekramt..
> Ich soll nachweisen, dass das Cauchy-Produkt der
> konvergenten Reihe
> [mm]\sum_{n=1}{\infty}\frac{(-1)^{n}}{\wurzel{n}}[/mm]
> mit sich selbst divergiert.
>
> mein Ansatz:
> hier können wir das Leibniz Kriterium verwenden. Es muss
> also nachgewiesen werde, dass die Folge [mm](-1)^{n}[/mm] * [mm]a_{n}[/mm]
> monoton fallend ist und gegen 0 konvergiert. [mm]a_{n}[/mm] ist in
> diesem Fall [mm]=\frac{1}{\wurzel{n}}[/mm]
> wegen [mm]\frac{1}{\wurzel{n+1}} \le \frac{1}{\wurzel{n}}[/mm] ist
> die Reihe monoton fallend. und Da es zu jedem n [mm]\ge[/mm] N ein N
> mit N > [mm]\frac{1}{\epsilon^{2}}[/mm] gibt ist die Folge auch eine
> Nullfolge...
Wieso machst du das? Das ist hier unnötig!
>
> wenn wir nun das Cauchy Produkt bilden erhalten wir:
> [mm]\sum_{k=0}{n}\frac{(-1)^{n}}{\wurzel{n}*\wurzel{n-k}}[/mm] =
> [mm]\sum_{k=0}{n}\frac{(-1)^{n}}{\wurzel{(n)*(n-k)}}[/mm] = [mm](-1)^{n}[/mm]
> * [mm]\sum_{k=0}{n}\frac{1}{\wurzel{(n)*(n-k)}}[/mm]
>
> zu zeigen ist nun, dass das Cauchy Produkt nicht
> konvergiert:
> [mm]|c_{n}|= |(-1)^{n}[/mm] *
> [mm]\sum_{k=0}{n}\frac{1}{\wurzel{(n)*(n-k)}}|[/mm] = |
> [mm]\sum_{k=0}{n}\frac{1}{\wurzel{(n)*(n-k)}}| \ge[/mm] |
> [mm]\sum_{k=0}{n}\frac{1}{\wurzel{n}*\wurzel{n}}|[/mm]=1
Startindex ist falsch!
Cauchy-Produktformel falsch benutzt!
Es gilt:
[mm] (\summe_{n=0}^{\infty}a_n)*(\summe_{n=0}^{\infty}b_n)=\summe_{n=0}^{\infty}c_n [/mm] mit [mm] c_n=\summe_{k=0}^{n}a_kb_{n-k}
[/mm]
Für das Cauchy-Produkt dieser bedingt konvergenten Reihe mit sich selbst gilt:
[mm] (\summe_{n=1}^{\infty}\frac{(-1)^{n}}{\sqrt{n}})*(\summe_{n=1}^{\infty}\frac{(-1)^{n}}{\sqrt{n}})=\summe_{n=1}^{\infty}c_n [/mm] mit [mm] c_n=\summe_{k=1}^{n}\frac{(-1)^k}{\sqrt{k}}*\frac{(-1)^{n-k}}{\sqrt{n-k}}=(-1)^n\summe_{k=1}^{n}\frac{1}{\sqrt{k(n-k)}}
[/mm]
> doch was sagt mit das über die Konvergenz aus?
> Muss [mm][mm] c_{n} [/mm] eine Nullfolge sein?
Ja, das ist aber nur ein notwendiges und kein hinreichendes Kriterium für Konvergenz!
> und was heißt mit sich selbst konvergieren?
Achso, jetzt verstehe ich. Du hast die Aufgabe nicht verstanden und deshalb mit der Leipnizkonvergenz angefangen.
Jetzt sollte alles klar sein. Falls nicht, einfach nochmal nach!
> bzw. wie weise ich dies nach?
Du musst nun zeigen, dass [mm] \summe_{n=1}^{\infty}c_n [/mm] divergiert.
Gruß
DieAcht
|
|
|
|
|
ah Danke. Leiniz brauch ich nicht, da ich weiß das die Reihe konvergiert, richtig? Es ist ja bereits in der Aufgabenstellung angegeben..
Ich habe allerdings etwas Schwierigkeiten zu beweisen, dass [mm] c_{n} [/mm] konvergiert. bzw. deinen Term weiter abzuschätzen und eine Minorante/Majorante zu finden die divergiert...
[mm] |(-1)^{n} [/mm] * [mm] \sum_{k=0}{\infty}\frac{1}{\wurzel{k*(n)}} [/mm] | = [mm] |\sum_{k=0}{\infty}\frac{1}{\wurzel{n*(n-k)}} [/mm] | [mm] \ge |\sum_{k=0}{\infty}\frac{1}{\wurzel{k*(n)}} [/mm] | ..??aber wie schätze ich weiter ab? Ist es Sinnvoll die harmonische Reihe als Minorante zu benutzen?
und noch eine Frage nebenbei. In einer ähnlichen Beispielaufgabe wurde c so umgeformt und abgeschätzt, dass man am Ende =1 erhält.. dadurch wurde die Divergenz der Reihe bewiesen..aber wieso das? Wenn man 1 erhält ist eine Reihe doch konvergent oder?
Danke schonmal
|
|
|
|
|
okay dann würde ich umformen zu:
[mm] \sum_{k=0}^{\infty}\frac{1}{\wurzel{k*(n-k)}} \ge \sum_{k=0}^{\infty}\frac{1}{\wurzel{k*n)}} \ge \sum_{k=0}^{\infty}\frac{1}{\wurzel{n*n)}} [/mm] = [mm] \sum_{k=0}^{\infty}\frac{1}{n} [/mm]
also ist die harmonische Reihe eine Minorante. Somit konvergiert [mm] c_{n} [/mm]
Vor dieser Summer stand ja allerdings noch die [mm] (-1)^{n} [/mm] ..wie bringe ich dies ein? bzw. Fällt dies nicht ganz weg, aufgrund des Betrages
PS: Nein du hast Recht, die Reihe [mm] \sum{k=0}^{\infty}1 [/mm] ist natürlich divergent. ich war irgendwie verwirrt und bin von der Folge ausgegangen. denn wenn [mm] c_{n}=1 [/mm] eine Folge ist. Ist diese natürlich konvergent. Sorry :-/
und DANKE
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:33 Sa 04.01.2014 | Autor: | DieAcht |
Hallo,
> okay dann würde ich umformen zu:
> [mm]\sum_{k=0}^{\infty}\frac{1}{\wurzel{k*(n-k)}} \ge \sum_{k=0}^{\infty}\frac{1}{\wurzel{k*n)}} \ge \sum_{k=0}^{\infty}\frac{1}{\wurzel{n*n)}}[/mm]
> = [mm]\sum_{k=0}^{\infty}\frac{1}{n}[/mm]
> also ist die harmonische Reihe eine Minorante. Somit
> konvergiert [mm]c_{n}[/mm]
> Vor dieser Summer stand ja allerdings noch die [mm](-1)^{n}[/mm]
> ..wie bringe ich dies ein? bzw. Fällt dies nicht ganz weg,
> aufgrund des Betrages
Achte genau auf deine Indizes, denn so ist es nämlich falsch!
Du sollst zeigen, dass [mm] \summe_{n=1}^{\infty}c_n= \summe_{n=1}^{\infty}(-1)^n\summe_{k=1}^{n}\frac{1}{\sqrt{k(n-k)}} [/mm] divergiert.
Betrachte zunächst nur [mm] |c_n|:
[/mm]
[mm] |c_n|=|(-1)^n\summe_{k=1}^{n}\frac{1}{\sqrt{k(n-k)}}|=\summe_{k=1}^{n}\frac{1}{\sqrt{k(n-k)}}
[/mm]
Du willst nun [mm] |c_n| [/mm] nach unten abschätzen, also musst du den Nenner vergrößern!
Tipp:
[mm] \frac{a+b}{2}\ge\sqrt{ab} [/mm] für alle [mm] a,b\in\IR_{\ge0}
[/mm]
>
>
>
> PS: Nein du hast Recht, die Reihe [mm]\sum{k=0}^{\infty}1[/mm] ist
> natürlich divergent. ich war irgendwie verwirrt und bin
> von der Folge ausgegangen. denn wenn [mm]c_{n}=1[/mm] eine Folge
> ist. Ist diese natürlich konvergent. Sorry :-/
>
>
> und DANKE
DieAcht
|
|
|
|
|
achso ich hoffe ich weiß was du meinst:
ich schätze also mithilfe des arithmetischen Mittels ab:
[mm] \sum_{k=0}^{\infty}\frac{1}{0,5*(nk-k^2)} \ge \sum_{k=0}^{\infty}\frac{1}{0,5*(nk)} \ge \sum_{k=0}^{\infty}\frac{1}{0,5(nk)} \ge \sum_{k=0}^{\infty}\frac{1}{0,5(k^2)} [/mm] diese Reihe würde ja nun konvergieren. Doch der letzte Schritt funktioniert ja nur unter der Berücksichtigung, dass [mm] k\ge [/mm] n ist dies so?
Liebe Grüße
|
|
|
|
|
du hast natürlich recht. n ist ja eine obere Grenze..
die Reihe konvergiert, da ich 2 als Faktor vor das Summenzeichen ziehen kann und somit die harmonische Reihe als Minorante erhalte, richtig?
Vielen Dank für deine Geduld!
|
|
|
|
|
>
> [mm]\summe_{n=1}^{\infty}\summe_{k=1}^{n}\frac{2}{n}=\summe_{n=1}^{\infty}\frac{2}{n}\summe_{k=1}^{n}1=\summe_{n=1}^{\infty}\frac{2}{n}*n=\summe_{n=1}^{\infty}2[/mm]
aber jetzt haben wir die Divergenz der harmonischen Reihe doch gar nicht benutzt oder? die rechte Reihe mit 2 ist divergent. Das war ja das, was wir eben mit 1 hatten
allerdings verstehe ich nicht ganz wie du auf den 2. und den 3. Schritt kommst. zum 3. Schritt: Wenn ich 1 summiere erhalte ich doch nicht n, oder?
LG
|
|
|
|
|
tausend Dank erstmal.
Das mit der Konstante verstehe ich das mit dem n ist immer noch etwas schwammig. Würde das etwa auch heißen, das [mm] \sum_{k=0}^{n}999 [/mm] = n ?
LG
rosapanther
|
|
|
|
|
achso. also 999n+999 wegen x=999 und xn-x oder?
|
|
|
|