www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchyfolge und Archimedisch
Cauchyfolge und Archimedisch < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyfolge und Archimedisch: Rückfrage/Tipp
Status: (Frage) beantwortet Status 
Datum: 16:16 So 08.01.2012
Autor: Studi91

Aufgabe
[mm] (a_{n})_{n} [/mm] und [mm] (b_{n})_{n} [/mm] sind Cauchyfolgen in [mm] \IQ, (a_{n} [/mm] - [mm] b_{n})_{n} [/mm] ist keine Nullfolge und [mm] \exists [/mm] ein q [mm] \in \IQ^{+} [/mm] und [mm] n_{0} \in \IN. [/mm] Es gilt:
[mm] \forall [/mm] n [mm] \ge n_{0}: a_{n} [/mm] + q < [mm] b_{n} [/mm] oder [mm] \forall [/mm] n [mm] \ge n_{0}: b_{n} [/mm] + q < [mm] a_{n} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dies heißt doch nichts anderes, als dass ab einem bestimmten [mm] n_{0} [/mm] alle Glieder von [mm] a_{n} [/mm] und [mm] b_{n} [/mm] so weit auseinander liegen, dass zwischen beiden noch eine rationale Zahl passt. Oder?
Sind denn [mm] a_{n} [/mm] und [mm] b_{n} [/mm] immer rational? Ich denke schon, nur ihr Grenzwert könnte in [mm] \IR [/mm] liegen, richtig? In einem Skript habe ich gelesen, dass für archimedisch angeordnete Körper gilt: [mm] \forall [/mm] a,b [mm] \in [/mm] K, a<b [mm] \exists [/mm] q [mm] \in \IQ: [/mm] a<q<b
Ist damit die Aufgabe nicht schon gelöst?

Lieben Dank

        
Bezug
Cauchyfolge und Archimedisch: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Mo 09.01.2012
Autor: fred97


> [mm](a_{n})_{n}[/mm] und [mm](b_{n})_{n}[/mm] sind Cauchyfolgen in [mm]\IQ, (a_{n}[/mm]
> - [mm]b_{n})_{n}[/mm] ist keine Nullfolge und [mm]\exists[/mm] ein q [mm]\in \IQ^{+}[/mm]
> und [mm]n_{0} \in \IN.[/mm] Es gilt:
>  [mm]\forall[/mm] n [mm]\ge n_{0}: a_{n}[/mm] + q < [mm]b_{n}[/mm] oder [mm]\forall[/mm] n [mm]\ge n_{0}: b_{n}[/mm]
> + q < [mm]a_{n}[/mm]

So wie die Aufgabe da oben steht , ist sie sinnlos. Ich kann mir zwar denken , wie es gemeint ist:

[mm](a_{n})_{n}[/mm] und [mm](b_{n})_{n}[/mm] sind Cauchyfolgen in  [mm] \IQ [/mm] und  [mm] (a_{n}-b_{n})_{n} [/mm] ist keine Nullfolge .

Zeige: es ex. ein q $ [mm] \in \IQ^{+} [/mm] $ und $ [mm] n_{0} \in \IN [/mm] $ mit:


$ [mm] \forall [/mm] $ n $ [mm] \ge n_{0}: a_{n} [/mm] $ + q < $ [mm] b_{n} [/mm] $ oder $ [mm] \forall [/mm] $ n $ [mm] \ge n_{0}: b_{n} [/mm] $ + q < $ [mm] a_{n} [/mm] $

Ist das die Aufgabe ?

FRED




>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Dies heißt doch nichts anderes, als dass ab einem
> bestimmten [mm]n_{0}[/mm] alle Glieder von [mm]a_{n}[/mm] und [mm]b_{n}[/mm] so weit
> auseinander liegen, dass zwischen beiden noch eine
> rationale Zahl passt. Oder?
>  Sind denn [mm]a_{n}[/mm] und [mm]b_{n}[/mm] immer rational? Ich denke schon,
> nur ihr Grenzwert könnte in [mm]\IR[/mm] liegen, richtig? In einem
> Skript habe ich gelesen, dass für archimedisch angeordnete
> Körper gilt: [mm]\forall[/mm] a,b [mm]\in[/mm] K, a<b [mm]\exists[/mm] q [mm]\in \IQ:[/mm]
> a<q<b
>  Ist damit die Aufgabe nicht schon gelöst?
>  
> Lieben Dank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]