Cauchyprodukt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für [mm] n\in\IN [/mm] sei:
[mm] a_n:=b_n:=\bruch{(-1)^n}{\wurzel{n+1}}
[/mm]
Zeigen Sie, dass die Reihen [mm] \summe_{n=0}^{\infty}a_n [/mm] und [mm] \summe_{n=0}^{\infty}b_n [/mm] konvergieren, ihr Cauchy-Produkt jedoch nicht. |
Den ersten Teil habe ich über Leibniz-Kriterium gezeigt.
Beim Cauchyprodukt komme ich auf:
[mm] (a_n)*(b_n)=\summe_{n=0}^{\infty}\summe_{k=0}^{n}\bruch{(-1)^k}{\wurzel{k+1}}*\bruch{(-1)^{n-k}}{\wurzel{n-k+1}}
[/mm]
[mm] =\summe_{n=0}^{\infty}(-1)^n\summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}*\wurzel{k+1}} [/mm] .
Und hier weiß ich schon nicht mehr so richtig weiter.
Eine Idee war, zu zeigen dass, [mm] (-1)^n\summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}*\wurzel{k+1}} [/mm] keine Nullfolge ist.
Das ist gdw. [mm] \summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}*\wurzel{k+1}}=:c_n [/mm] keine Nullfolge ist.
Hierfür wollte ich dann zeigen, dass [mm] c_{n+1}>c_n [/mm] (mit [mm] c_0>0).
[/mm]
[mm] \gdw \summe_{k=0}^{n+1}\bruch{1}{\wurzel{n-k+2}*\wurzel{k+1}}>\summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}*\wurzel{k+1}}
[/mm]
[mm] \gdw \summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+2}*\wurzel{k+1}}+\bruch{1}{\wurzel{n+2}*\wurzel{1}}>\summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}*\wurzel{k+1}}
[/mm]
Naja und hier sind jetzt auf der linken Seite die Summanden ein bisschen kleiner als rechts, dafür gibt es links einen mehr, der es wohl wieder "rausreißt". Aber ich weiß nicht, wie ich das begründen soll.
Vielen Dank schonmal für die Antworten.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:50 So 05.06.2011 | Autor: | dimi727 |
Hey Felix, bei mir läuft alles iwie nicht aufs Ergebnis zu.
Erstmal :
Muss es nicht heißen [mm] \bruch{1}{\wurzel{n-k+1}\cdot{}\wurzel{k+1}} \ge \frac{1}{\sqrt{n+1} \cdot \sqrt{k + 1}} [/mm] ?
Dann hätte ich
[mm] \summe_{n=0}^{\infty}(-1)^n\summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}\cdot{}\wurzel{k+1}} \ge \summe_{n=0}^{\infty}\bruch{(-1)^n}{\wurzel{n+1}}\summe_{k=0}^{n}\bruch{1}{\wurzel{k+1}}
[/mm]
Wenn ich jetzt die Summanden von [mm] \summe_{k=0}^{n}\bruch{1}{\wurzel{k+1}} [/mm] gegen [mm] \bruch{1}{\wurzel{n+1}} [/mm] abschätze, dann bekomme ich doch :
[mm] \summe_{n=0}^{\infty}\bruch{(-1)^n}{\wurzel{n+1}}\summe_{k=0}^{n}\bruch{1}{\wurzel{k+1}} \ge\summe_{n=0}^{\infty}\bruch{(-1)^n}{\wurzel{n+1}}*{n}*\bruch{1}{\wurzel{n+1}} [/mm] = [mm] \summe_{n=0}^{\infty}\bruch{(-1)^n*n}{{n+1}}
[/mm]
Womit ich eine konvergente Minorante kriege, was mir nichts bringt.. :/
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:00 So 05.06.2011 | Autor: | felixf |
Moin!
> Hey Felix, bei mir läuft alles iwie nicht aufs Ergebnis
> zu.
>
> Erstmal :
>
> Muss es nicht heißen
> [mm]\bruch{1}{\wurzel{n-k+1}\cdot{}\wurzel{k+1}} \ge \frac{1}{\sqrt{n+1} \cdot \sqrt{k + 1}}[/mm]
> ?
Stimmt, du hast Recht. Laeuft aber auf's Gleiche hinaus :)
> Dann hätte ich
>
> [mm]\summe_{n=0}^{\infty}(-1)^n\summe_{k=0}^{n}\bruch{1}{\wurzel{n-k+1}\cdot{}\wurzel{k+1}} \ge \summe_{n=0}^{\infty}\bruch{(-1)^n}{\wurzel{n+1}}\summe_{k=0}^{n}\bruch{1}{\wurzel{k+1}}[/mm]
Nein, nicht ganz. Du hast ja wechselnde Vorzeichen!
Schau dir einfach jeden Summand ohne das [mm] $(-1)^n$ [/mm] einzelnd an. Es reicht ja schon aus dafuer zu zeigen, dass es nicht beliebig klein wird.
> Wenn ich jetzt die Summanden von
> [mm]\summe_{k=0}^{n}\bruch{1}{\wurzel{k+1}}[/mm] gegen
> [mm]\bruch{1}{\wurzel{n+1}}[/mm] abschätze, dann bekomme ich doch
> :
>
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^n}{\wurzel{n+1}}\summe_{k=0}^{n}\bruch{1}{\wurzel{k+1}} \ge\summe_{n=0}^{\infty}\bruch{(-1)^n}{\wurzel{n+1}}*{n}*\bruch{1}{\wurzel{n+1}}[/mm]
> = [mm]\summe_{n=0}^{\infty}\bruch{(-1)^n*n}{{n+1}}[/mm]
>
> Womit ich eine konvergente Minorante kriege, was mir nichts
> bringt.. :/
Das ist aber nicht konvergent.
Du bekommst allerdings keine Minorante, wenn du richtig vorgehst.
LG Felix
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 19:07 So 05.06.2011 | Autor: | dimi727 |
Irgendwas scheine ich nicht zu verstehen,
wenn du meinst, ich soll zeigen,dass das Ding da oben nicht beliebig klein wird, dann kriege ich doch eine Minorante? Und weiter zeige ich doch,dass die Summanden nie kleiner werden als [mm] 1/\wurzel{n+1} [/mm] richtig?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 07.06.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|