www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Chinesischer Restsatz
Chinesischer Restsatz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chinesischer Restsatz: Beispiel
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 24.10.2009
Autor: mathejunkie

Aufgabe
x [mm] \equiv [/mm] 2  mod 20
x [mm] \equiv [/mm] 6 mod 9
x [mm] \equiv [/mm] 5 mod 7

Berechne x

Also mit dem chinesischen Restsatz:

m= 20*9*7=1260

[mm] m_1= [/mm] 1260/20= 63
[mm] m_2 [/mm] = 1260/9=140
[mm] m_3 [/mm] = 1260/7= 180

Jetzt komm ich nicht weiter...

Im Skript steht suche [mm] \tilde M_j [/mm] mit [mm] m_j* \tilde M_j \equiv [/mm] 1 mod [mm] m_j [/mm]

Aber wie mache ich das?

Vielen Dank für die Hilfe

        
Bezug
Chinesischer Restsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 So 25.10.2009
Autor: felixf

Halo!

> x [mm]\equiv[/mm] 2  mod 20
>  x [mm]\equiv[/mm] 6 mod 9
>  x [mm]\equiv[/mm] 5 mod 7
>  
> Berechne x
>  Also mit dem chinesischen Restsatz:
>  
> m= 20*9*7=1260
>  
> [mm]m_1=[/mm] 1260/20= 63
>  [mm]m_2[/mm] = 1260/9=140
>  [mm]m_3[/mm] = 1260/7= 180

Erstmal: setze [mm] $n_1 [/mm] = 20$, [mm] $n_2 [/mm] = 9$ und [mm] $n_3 [/mm] = 7$. Dann ist [mm] $m_i [/mm] = 1260 / [mm] n_i$. [/mm]

> Jetzt komm ich nicht weiter...
>  
> Im Skript steht suche [mm]\tilde M_j[/mm] mit [mm]m_j* \tilde M_j \equiv[/mm]
> 1 mod [mm]m_j[/mm]

Da hast du dich aber vertippt: modulo [mm] $m_j$ [/mm] ist [mm] $m_j [/mm] * [mm] \tilde{M_j}$ [/mm] immer 0 und niemals 1 -- es sei denn [mm] $m_j [/mm] = [mm] \pm [/mm] 1$.

Wenn du schon nach dem Skript vorgehen willst, schau mal genauer nach was da steht.

Insgesamt willst du ja [mm] $e_1, e_2, e_3$ [/mm] finden mit [mm] $e_i \equiv [/mm] 1 [mm] \pmod{n_i}$ [/mm] und [mm] $e_i \equiv [/mm] 0 [mm] \pmod{n_j}$ [/mm] mit $j [mm] \neq [/mm] i$. Zusammenfassend: [mm] $e_i \equiv [/mm] 1 [mm] \pmod{n_i}$ [/mm] und [mm] $e_i \equiv [/mm] 0 [mm] \pmod{m_i}$; [/mm] zweiteres heisst, dass [mm] $e_i$ [/mm] ein Vielfaches von [mm] $m_i$ [/mm] sein muss. Du kannst also ein [mm] $M_i$ [/mm] suchen mit [mm] $m_i M_i \equiv [/mm] 1 [mm] \pmod{n_i}$: [/mm] dann ist [mm] $e_i [/mm] := [mm] m_i M_i$ [/mm] ein Vielfaches von [mm] $m_i$. [/mm]

Vermutlich steht das auch so in deinem Skript, also dass [mm] $m_j \tilde{M_j} \equiv [/mm] 1 [mm] \pmod{n_j}$ [/mm] sein soll und nicht modulo [mm] $m_j$! [/mm]

> Aber wie mache ich das?

Stichwort: Erweiterter Euklidischer Algorithmus.

(Es bedeutet [mm] $m_j \tilde{M_j} \equiv [/mm] 1 [mm] \pmod{n_j}$ [/mm] ja [mm] $m_j \tilde{M_j} [/mm] + x [mm] n_j [/mm] = 1$ fuer ein $x [mm] \in \IZ$.) [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]