Circular Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | $ [mm] A:=\pmat{ a_1 & \ldots &a_1 \\ a_2 & \ldots &a_2 \\ \vdots & &\vdots\\ a_k& \ldots & a_k} [/mm] $ und [mm] k\in\IN.
[/mm]
Definition 1: Eine Matrix [mm] M=(m_{ij})_{1\leq i,j\leq n} [/mm] heißt circular, falls ein $ [mm] \lambda\in\IR [/mm] $ existiert, so dass gilt $ [mm] M=A+A^T+\lambda I_k [/mm] $. |
Hallo zusammen,
angenommen M ist circular (siehe Def. 1) dann soll es eine orthonarmale Matrix Q geben so dass [mm] $QMQ^T=\lambda I_k$ [/mm] ist.
Nun erinnert mich das daran, dass symmetrische Matrizen, wie M eine ist, nach dem Hauptachsentheorem diagonalisierbar sind, d.h. es existiert eine Diagonalmatrix $D$ und eine orthonormale Matrix $Q$ mit $D=Q^TMQ$. Dabei sind die Diagonaleinträge von D die Eigenwerte von M.
Diese Vermutung angewandt auf das Bsp. [mm] $A=\pmat{ 2 & 2 & 2\\ 3 & 3& 3\\ 4 & 4 & 4 }$ [/mm] mit $ [mm] M=A+A^T+5 I_3 [/mm] $ zeigt das die Eigenwerte von M gleich 23.327379, 5.000000 und 4.672621 sind. somit weiß ich nicht wie sich die Eigenschaft [mm] $QMQ^T=\lambda I_k$ [/mm] für M ergeben soll. Hat jemand eine Idee?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:28 Do 06.06.2013 | Autor: | felixf |
Moin!
> [mm]A:=\pmat{ a_1 & \ldots &a_1 \\ a_2 & \ldots &a_2 \\ \vdots & &\vdots\\ a_k& \ldots & a_k}[/mm]
> und [mm]k\in\IN.[/mm]
>
> Definition 1: Eine Matrix [mm]M=(m_{ij})_{1\leq i,j\leq n}[/mm]
> heißt circular, falls ein [mm]\lambda\in\IR[/mm] existiert, so dass
> gilt [mm]M=A+A^T+\lambda I_k [/mm].
>
> Hallo zusammen,
>
> angenommen M ist circular (siehe Def. 1) dann soll es eine
> orthonarmale Matrix Q geben so dass [mm]QMQ^T=\lambda I_k[/mm] ist.
Meinst du mit orthonormal, dass $Q [mm] Q^T [/mm] = [mm] Q^T [/mm] Q = [mm] I_k$ [/mm] ist?
In dem Fall folgt daraus doch $M = [mm] Q^T [/mm] Q M [mm] Q^T [/mm] Q = [mm] Q^T \lambda I_k [/mm] Q = [mm] \lambda Q^T [/mm] Q = [mm] \lambda I_k$.
[/mm]
Damit nun [mm] $A^T [/mm] + A + [mm] \lambda I_k [/mm] = [mm] \lambda I_k$ [/mm] ist, muss [mm] $A^T [/mm] + A = 0$ sein, was beim speziellen Format von $A$ bedeutet, dass $A = 0$ ist.
Also irgendwas stimmt da wirklich nicht :)
LG Felix
|
|
|
|
|
Aufgabe | $ [mm] M=\pmat{ 8 & 3 & 5\\ 3 & 10& 6\\ 5 & 6 & 14 } Q=\pmat{ -1/\sqrt{2} & 0 & 1/\sqrt{2}\\ 1/\sqrt{6} & -2/\sqrt{6}& 1/\sqrt{6}} [/mm] $ |
Hi,
im Aufgabenteil steht ein Beispiel für das [mm] $QMQ^T=6I_2$ [/mm] gilt. Wobei ich nicht weiß wie in dem Fall A und [mm] \lambda [/mm] aussieht, aber M erfüllt die Eigenschaft "circular" [mm] $m_{ii}+m_{jj}-2m_{ij}=2\lambda$, [/mm] was äquivalent sein soll zu [mm] $M=A+A^T+\lambda I_k [/mm] $.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:13 Do 06.06.2013 | Autor: | felixf |
Moin!
> [mm]M=\pmat{ 8 & 3 & 5\\ 3 & 10& 6\\ 5 & 6 & 14 } Q=\pmat{ -1/\sqrt{2} & 0 & 1/\sqrt{2}\\ 1/\sqrt{6} & -2/\sqrt{6}& 1/\sqrt{6}}[/mm]
>
> Hi,
>
> im Aufgabenteil steht ein Beispiel für das [mm]QMQ^T=6I_2[/mm]
> gilt.
Aber Moment! Aus dem ersten Post von dir folgt doch, dass $Q$ quadratisch sein muss, und dass $Q M [mm] Q^T [/mm] = 6 [mm] I_3$ [/mm] sein muss, da $M$ eine $3 [mm] \times [/mm] 3$-Matrix ist!
Also was genau ist jetzt die Definition und was ist zu zeigen? Koennen die Einheitsmatrizen da andere Eigenschaften haben?
> Wobei ich nicht weiß wie in dem Fall A und [mm]\lambda[/mm]
> aussieht, aber M erfüllt die Eigenschaft "circular"
> [mm]m_{ii}+m_{jj}-2m_{ij}=2\lambda[/mm], was äquivalent sein soll
> zu [mm]M=A+A^T+\lambda I_k [/mm].
Ja, das kann gut aequivalent sein. Man kann schnell nachrechnen, dass aus $M = A + [mm] A^T [/mm] + [mm] \lambda I_k$ [/mm] folgt [mm] $m_{ii} [/mm] + [mm] m_{jj} [/mm] - 2 [mm] m_{ij} [/mm] = 2 [mm] \lambda$, [/mm] da [mm] $m_{ij} [/mm] = [mm] a_i a_j$ [/mm] ist fuer $i [mm] \neq [/mm] j$ und da [mm] $m_{ii} [/mm] = [mm] a_i^2 [/mm] + [mm] \lambda$ [/mm] ist.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:05 Do 06.06.2013 | Autor: | Reduktion |
Hi,
Entschuldigung da habe ich etwas durcheinander gebracht, tatsächlich wird ein paar Seiten später die Voraussetzung wie folgt formuliert, [mm] $QMQ^T=\lambda I_{k-1}$
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:30 Do 06.06.2013 | Autor: | felixf |
Moin,
> Entschuldigung da habe ich etwas durcheinander gebracht,
> tatsächlich wird ein paar Seiten später die Voraussetzung
> wie folgt formuliert, [mm]QMQ^T=\lambda I_{k-1}[/mm]
ok :)
Dann ist es aber nicht mehr so schwer.
Es ist $Q M [mm] Q^T [/mm] = [mm] \lambda I_{k+1}$ [/mm] aequivalent zu $Q (M - [mm] \lambda I_k) Q^T [/mm] = 0$. Wenn $M = A + [mm] A^T [/mm] + [mm] \lambda I_k$ [/mm] ist, dann steht da also $Q (A + [mm] A^T) Q^T [/mm] = 0$.
Wenn du zeigen kannst, dass $A + [mm] A^T$ [/mm] Rang 1 hat, dann hat dessen Kern Dimension $k - 1$. Also kannst du ein [mm] $Q^T$ [/mm] finden mit orthonormalen Spalten (womit $Q$ orthonormale Zeilen hat) mit $(A + [mm] A^T) Q^T [/mm] = 0$, und somit auch $Q (A + [mm] A^T) Q^T [/mm] = 0$.
Ich glaube allerdings eher, dass $A + [mm] A^T$ [/mm] im Allgemeinen Rang 2 hat. Dann sollte es trotzdem gehen, wenn du $Q$ sorgfaeltig waehlst, und zwar so, dass (A + [mm] A^T) Q^T$ [/mm] nur noch Rang 1 hat und dieser eindimensionale Vektorraum dann von $Q$ "aufgefressen" wird, also dass $Q (A + [mm] A^T) Q^T [/mm] = 0$ ist.
LG Felix
|
|
|
|
|
Hi,
jetzt kann ich nicht ganz folgen
Es ist $ Q M [mm] Q^T [/mm] = [mm] \lambda I_{k+1} [/mm] $ aequivalent zu $ Q (M - [mm] \lambda I_k) Q^T [/mm] = 0 $. Wenn $ M = A + [mm] A^T [/mm] + [mm] \lambda I_k [/mm] $ ist, dann steht da also $ Q (A + [mm] A^T) Q^T [/mm] = 0 $.
In deiner ersten Antwort hattest du erwähnt, dass $Q M [mm] Q^T [/mm] = [mm] \lambda I_{k}$ [/mm] nur gilt, falls A=0. Deine Argumentation verstehe ich bishierhin also so:
$Q M [mm] Q^T [/mm] = [mm] \lambda I_{k}$ [/mm] ist äquivalent zu $ Q (M - [mm] \lambda I_k) Q^T [/mm] = 0 $, da A=0 sein muss wenn $ Q M [mm] Q^T [/mm] = [mm] \lambda I_{k} [/mm] $ gelten soll. So ganz schimmert mir aber nicht wie man zeigt das man für Matrizen der Form $ M = A + [mm] A^T [/mm] + [mm] \lambda I_k [/mm] $ eine orthogonale Matrix [mm] Q^{k-1\times k} [/mm] findet, so dass [mm] $QMQ^T=I_{k-1}$ [/mm] gilt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 So 09.06.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Angenommen [mm] Q^{k\times k-1} [/mm] ist eine bel. orthonormale Matrix. Nun gilt [mm] $QMQ^T=Q(A+A^T+\lambda I_k)Q^T=QAQ^T+QA^TQ^T+Q\lambda I_kQ^T$ [/mm] folgt dann aus der Definition von A oder irgendeinem anderen Grund [mm] AQ^T=0 [/mm] und [mm] QA^T=0? [/mm] Damit man die Gleichungskette weiter führen kann zu [mm] $QAQ^T+QA^TQ^T+Q\lambda I_kQ^T=\lambda QQ^T=\lambda I_{k-1}$?
[/mm]
Für bel. Q scheint das nicht zu funktionieren, aber wie du sagtest kann man Q vermutlich so wählen damit das funktioniert.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 So 09.06.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Sa 08.06.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|