www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - DGL allgemeine Lösung
DGL allgemeine Lösung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL allgemeine Lösung: Frage
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 31.05.2005
Autor: kruder77

Hallo,

ich habe folgende DGL Aufgabe:

2y''+20y'+50y=0

diese habe ich dann in die charakteristische Gleichung eingesetzt
und erhalte dort -5 für [mm] \lambda_{1/2} [/mm]

wie komme ich von dort auf die allgemeine Lösung?

Vielen Dank für die Hilfe
Kruder77

        
Bezug
DGL allgemeine Lösung: Hilfestellung
Status: (Antwort) fertig Status 
Datum: 21:49 Di 31.05.2005
Autor: MathePower

Hallo,

> Hallo,
>  
> ich habe folgende DGL Aufgabe:
>  
> 2y''+20y'+50y=0
>  
> diese habe ich dann in die charakteristische Gleichung
> eingesetzt
>  und erhalte dort -5 für [mm]\lambda_{1/2}[/mm]
>  
> wie komme ich von dort auf die allgemeine Lösung?

zwei linear unabhängige Lösungen sind [mm]e^{ - 5t} [/mm] und [mm]\[ t\;e^{ - 5t}[/mm]. Die allgemeine Lösung ergibt sich dann zu:

[mm]y(t)\; = \;c_{1} \;e^{ - 5t} \; + \;c_{2} \;t\;e^{ - 5t} [/mm]

Setze also bei mehrfachen Eigenwerten mit einem Polynom nächsthöheren Grades an. Für einen doppelten Eigenwert, also mit einem konstanten und einem linearen Polynom.

Gruß
MathePower




Bezug
                
Bezug
DGL allgemeine Lösung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:00 Di 31.05.2005
Autor: kruder77

Hi,

> zwei linear unabhängige Lösungen sind [mm]e^{ - 5t}[/mm] und [mm]\[ t\;e^{ - 5t}[/mm]. Die allgemeine Lösung ergibt sich dann zu:
>  
> [mm]y(t)\; = \;c_{1} \;e^{ - 5t} \; + \;c_{2} \;t\;e^{ - 5t}[/mm]

  
Ist vielleicht eine blöde Frage, aber ich stelle sie trotzdem:

Müssen bei einer DGL 2.Ordnung immer zwei linear unabhängige Lösungen entstehen?

Grüße Kruder77

Bezug
                        
Bezug
DGL allgemeine Lösung: Immer
Status: (Antwort) fertig Status 
Datum: 22:05 Di 31.05.2005
Autor: MathePower

Hallo kruder,

> Müssen bei einer DGL 2.Ordnung immer zwei linear
> unabhängige Lösungen entstehen?

Ja.

Bei DGL's 2. Ordnung gibt es immer 2 linear unabhängige Lösungen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]