Dahrstellungs-,Basiswechsel-M < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:06 So 31.07.2005 | Autor: | mukki |
Hallo!
Ich habe mal ein paar allgemeine Fragen:
1. Was ist eine Dahrstellungsmatrix und wie berechnet man sie?
2. Was bedeutet der Ausdruck M(E2,L,E3) genau?
3. Was ist eine Basiswechselmatrix und wie berechnet man sie?
Mit bestem Gruß
Max
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:53 So 31.07.2005 | Autor: | DaMenge |
Hallo Max,
also ich fange mal mit der zweiten Frage an, denn die erste ist hiervon eine Spezialisierung, wenn ich das richtig sehe: Bei 2) sollen E2 bzw. E3 Basen zweier (nicht notwendig verschiedener) Vektorräume U und V sein und L eine lineare Abbildung dazwischen, richtig?
Dann ist die von dir gegebene Matrix diejenige, eindeutig bestimmte, die folgende Eigenschaft hat: Wenn man einen Vektor u aus U in Basisdarstellung E2 in die Matrix steckst (d.h. von rechts ranmultipliziert), dann soll das Ergebnis sein : Das Bild von u in V, aber in Basisdarstellung E3.
Kommen wir damit zur ersten Frage : an einer Darstellungsmatrix einer linearen Abbildung L (wie oben) stehen ja keine Basen dran, deshalb sind hier entweder immer die kanonischen gemeint, oder die implizit gegebenen :
L ist eindeutig über die Bilder von n linear unabhängigen Vektoren gegeben : [mm] $L(u_1)=v_1,...,L(u_n)=v_n$, [/mm] wobei n die Dimension von U ist.
[Wenn man eine expliziete Abbildungsvorschrift hat, kann man die Bilder der kanonischen Basisvektoren berechnen]
[mm] u_1 [/mm] bis [mm] u_n [/mm] bilden natürlich eine Basis in U, diese nennen wir mal A.
die Bilder, also [mm] v_1 [/mm] bis [mm] v_n, [/mm] sind selbst natürlich auch bezüglich irgendeiner Basis gegeben, diese nennen wir mal B.
Dann ist die Darstellungsmatrix gleich der Matrix M(A,L,B) , denn wenn man nun einen Vektor bzgl. A hinein steckt, wird er über die Linearität in seine Komponenten zerlegt und auf die entsprechenden v's in B durch L abgebildet, d.h. das Ergebnis ist tatsächlich das Bild des Vektors unter L in Basisdarstellung B.
[Wie gesagt: bei expliziten Abbildungsvorschriften hat man dann kanonische Basen (sowohl in U alks auch in V)]
Doch der wirkliche Trick kommt erst : Wie sieht diese Abbildungsmatrix nun aus? Dies ist einfach:
Die Bilder der Basisvektoren stehen als Spalten in der Matrix
Wenn man nun nämlich [mm] u_1 [/mm] in Basisdarstellung A an diese Matrix multipliziert, (also den ersten kanonischen Einheitsvektor), dann erhält man die erste Spalte (, was ja das Bild von [mm] u_1 [/mm] sein soll in Basisdarstellung B) - dies gilt analog auch für alle anderen u's und damit für alle Vektoren aus U.
EDIT:
für eine leichtere Einführung, kannst du mal HIER schauen.
und für die dritte Frage, schau mal hier: Transformationsmatrix
viele Grüße
DaMenge
|
|
|
|