www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Darstellung natürlicher Zahlen
Darstellung natürlicher Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung natürlicher Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 16.11.2005
Autor: mathmetzsch

Hallo an Alle!!

Ich soll mir über folg. Gedanken machen:

Gegeben ist die Darstellung [mm] a_{n-1}a_{n-2}...a_{1}a{0_{r}} [/mm] einer natürlichen Zahl zur Basis [mm] r=q^{k} [/mm] mit Ziffern [mm] a_{i}\in Z_{r}={0,1,...,r-1} [/mm] und [mm] a_{n-1}\not= [/mm] 0, wobei [mm] q,k,r\in\IN\{0} [/mm] gilt. Wie sieht die Darstellung

                 [mm] b_{m-1}b_{m-2}...b_{1}b{0_{q}} [/mm]

dieser Zahl zur Basis q mit Ziffern [mm] b_{i}\in Z_{q}={0,1,...,r-1} [/mm] und [mm] b_{m}\not= [/mm] 0 aus?

Außerdem soll man sich überlegen, warum [mm] m\le [/mm] nk gilt?
Ich soll da keinen Beweis liefern, die Sache nur irgendwie plausibel machen. Hat da vielleicht jemand ne Idee? Ich habe das schon mit einigen Zahlen durchprobiert und es stimmt, aber warum?

Freue mich über jede Antwort.
VG mathmetzsch

        
Bezug
Darstellung natürlicher Zahlen: Frage zur Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 09:46 Do 17.11.2005
Autor: Toellner

Hallo Daniel,

> wobei
> [mm]q,k,r\in \IN- \{0\}[/mm] gilt.

Ich nehme an q > 1 ?

> Wie sieht die Darstellung
> [mm]b_{m-1}b_{m-2}...b_{1}b{0_{q}}[/mm]
> dieser Zahl zur Basis q mit Ziffern [mm]b_{i}\in Z_{q}={0,1,...,r-1}[/mm]
> und [mm]b_{m}\not=[/mm] 0 aus?

Nicht eher
[mm]b_{i}\in Z_{q}={0,1,...,q-1}[/mm] ?

Gruß, Richard

Bezug
                
Bezug
Darstellung natürlicher Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Do 17.11.2005
Autor: mathmetzsch

Hallo Richard,

ja doch natürlich, da habe ich mich wohl vertippt.
Und kannst du mir helfen?

VG Daniel

Bezug
        
Bezug
Darstellung natürlicher Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Do 17.11.2005
Autor: Toellner

Hallo Daniel,

Dank für Deine Mail...
Du untersuchst erstmal die Darstellung der Zahl z zur Basis q:
z =  [mm] \summe_{i=0}^{m-1} b_i q^{i} [/mm]
indem Du sie beginnend mit dem kleinsten Summanden immer in k-Portionen "abgepackt" hinschreibst und für jedes Paket das maximale
[mm] q^{...} [/mm] ausklammerst. Da das i.A nicht glatt aufgeht, führst Du noch führende Potenzen mit Koeffizienten 0 ein, oder hörst bei [(m-1)/k] (= Ganzahlanteil) auf:
z =  [mm] \summe_{j=0}^{[(m-1)/k]} (\underbrace{\summe_{i=0}^{k-1}b_{jk+i}*q^{i}}_{= a_j})*q^{kj} [/mm]
Jetzt ist zu zeigen, dass die angegebenen Summen tatsächlich die [mm] a_j [/mm] sind:
Da innerhalb der Summe die [mm] b_{jk+i} [/mm] alle < q-1 sind kann die Summe maximal (q-1) [mm] \summe_{i=0}^{k-1}q^{i} [/mm] = [mm] q^{k}-1 [/mm] sein. Damit sind die [mm] a_j [/mm] tatsächlich zulässige Ziffern zur Basis [mm] q^{k}, [/mm] und weil sie mit reinen [mm] q^{k}-Potenzen [/mm] multipliziert werden, handelt es sich auch um eine [mm] q^{k}-adische [/mm] Darstellung von z. Die ist eindeutig, also handelt es sich um genau die in der Augabenstellung vorgegebene Darstellung und es gilt n = [(m-1)/k].
Jetzt haben wir mit [mm] a_j [/mm] = [mm] \summe_{i=0}^{k-1}b_{jk+i}*q^{i} [/mm]  das Pferd vom Schwanz aufgezäumt, weil die [mm] a_j [/mm] gegeben sind und die [mm] b_{jk+i} [/mm] zu bestimmen. Die Formel zeigt aber, wie es rekursiv geht:
i=0:  [mm] b_{jk} [/mm] := [mm] a_j [/mm] mod q.
seien für l < i  die [mm] b_{jk+l} [/mm] alle bereits gegeben, dann ist
[mm] b_{jk+ i} [/mm] := [mm] ((a_j [/mm] - [mm] \summe_{l=0}^{i-1}b_{jk+l}*q^{l}) [/mm] mod [mm] q^{i+1})/q^{i} [/mm]

Gruß, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]