Das bestimmte Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 23:55 Mo 15.05.2006 | Autor: | JacoHB |
Aufgabe | Wie groß ist die Fläche zwischen der Geraden mit der Gleichung 4x-3y+7=0 und dem Graphen der Funktion f mit [mm] f(x)=\begin{cases} x^2, & \mbox{für } x \mbox{"kleiner gleich"1} \\ (x-2)^2, & \mbox{für } x \mbox{"größer als"1} \end{cases} [/mm] ? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Die Lösung lautet 18!
Ich würde gerne einen ausführlichen Rechenschritt, der zu der Lösung führt haben.
Gruß: Jaco
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:34 Di 16.05.2006 | Autor: | leduart |
Hallo Jacob
Hast du mal die Forenregeln gelesen? Eigene Lösungsansätze und Ideen und so? Wir machen nicht HA für Schüler sondern helfen bei Fragen!
Hast du schon ne Zeichnung der 2 Parabeln gemacht? Hast du dann die Schnittpunkte bestimmt?
Eigentlich sind das schon 2 wichtige Schritte, die zur Lösung führen
Schilder uns, wo du nicht weiter kommst und wir helfen wenn möglich.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:30 Di 16.05.2006 | Autor: | JacoHB |
Aufgabe | Wie groß ist die Fläche zwischen der Geraden mit der Gleichung 4x-3y+7=0 und dem Graphen der Funktion f mit [mm] f(x)=\begin{cases} x^2, & \mbox{für } x \mbox{"kleiner gleich"1} \\ (x-2)^2, & \mbox{für } x \mbox{"größer als"1} \end{cases} [/mm] ? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Die Lösung lautet 18!
Ich würde gerne einen ausführlichen Rechenschritt, der zu der Lösung führt haben.
Gruß: Jaco> Hallo Jacob
> Hast du mal die Forenregeln gelesen? Eigene Lösungsansätze
> und Ideen und so? Wir machen nicht HA für Schüler sondern
> helfen bei Fragen!
> Hast du schon ne Zeichnung der 2 Parabeln gemacht? Hast du
> dann die Schnittpunkte bestimmt?
> Eigentlich sind das schon 2 wichtige Schritte, die zur
> Lösung führen
> Schilder uns, wo du nicht weiter kommst und wir helfen
> wenn möglich.
> Gruss leduart
Meine Schilderung für den Ansatz der Aufgabe:
Die Gerade 4x-3y+7=0 nach f(x) aufgelöst ergibt f(x) = [mm] \bruch{4}{3}x+ \bruch{7}{3}.
[/mm]
Jetzt habe ich eine Gerade und ein abschnittsweise monotoner Graph, ich muss als nächstes die Schnittstelle(n) der beiden Funktionen im Intervall [a;b] berechnen, dazu muss ich die Gerade mit dem abschnittsweise monotonen Graph "gleichsetzen", ich weiß nicht wie ich folgende Gleichung nach x auflösen soll [mm] \bruch{4}{3}x+ \bruch{7}{3}=\begin{cases} x^2, & \mbox{für } x \mbox{"kleiner gleich"1} \\ (x-2)^2, & \mbox{für } x \mbox{"größer als"1} \end{cases}. [/mm] Wenn ich die beiden Funktionen "gleichsetzen" und nach x auflösen könnte, würde ich mit der Festlegung der Integrationsintervall(e) beginen.
|
|
|
|