Definition Differenzierbarkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:46 Do 18.08.2016 | Autor: | Schobbi |
Hallo zusammen, ich soll zeigen, dass eine Funktion f: [mm] \IR^2\to\IR [/mm] differenzierbar im Punkt [mm] (x_0,y_0)=(0,0) [/mm] ist.
Dazu habe ich gezeigt, dass gilt:
[mm] \limes_{(x,y)\rightarrow(0,0)}\bruch{f(x,y)-f(0,0)-<\nabla f(0,0),(x,y)>}{||(x,y)||}=0
[/mm]
Das passt auch alles so weit, doch jetzt möchte ich ebenfalls die Differenzierbarkeit in dem Punkt (1,2) zeigen.
Somit habe ich die obige Definition versucht auf den Punkt (1,2) anzuwenden? D.h es ist zu zeigen:
[mm] \limes_{(x,y)\rightarrow(1,2)}\bruch{f(x,y)-f(1,2)-<\nabla f(1,2),(x,y)>}{||(x,y)-(1,2)||}=0
[/mm]
Ist das richtig?
Oder muss ich den Punkt (1,2) auch weiter mit ins Skalarprodukt reinnehmen, denn ich habe auch folgende Art der Definition gefunden und bin mir nicht sicher welche die richtige bzw. die sinnvollere ist
[mm] \limes_{(x,y)\rightarrow(0,0)}\bruch{f(x,y)-f(0,0)-[\bruch{\partial f}{\partial x}(1,2)](x-1)-[\bruch{\partial f}{\partial y}(1,2)](y-2)}{||(x,y)||}=0
[/mm]
Grüße Schobbi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:11 Do 18.08.2016 | Autor: | fred97 |
> Hallo zusammen, ich soll zeigen, dass eine Funktion f:
> [mm]\IR^2\to\IR[/mm] differenzierbar im Punkt [mm](x_0,y_0)=(0,0)[/mm] ist.
>
> Dazu habe ich gezeigt, dass gilt:
> [mm]\limes_{(x,y)\rightarrow(0,0)}\bruch{f(x,y)-f(0,0)-<\nabla f(0,0),(x,y)>}{||(x,y)||}=0[/mm]
>
> Das passt auch alles so weit,
Ja, dass passt !
> doch jetzt möchte ich
> ebenfalls die Differenzierbarkeit in dem Punkt (1,2)
> zeigen.
> Somit habe ich die obige Definition versucht auf den Punkt
> (1,2) anzuwenden? D.h es ist zu zeigen:
> [mm]\limes_{(x,y)\rightarrow(1,2)}\bruch{f(x,y)-f(1,2)-<\nabla f(1,2),(x,y)>}{||(x,y)-(1,2)||}=0[/mm]
>
> Ist das richtig?
Nein, das ist falsch !
>
> Oder muss ich den Punkt (1,2) auch weiter mit ins
> Skalarprodukt reinnehmen,
Na klar, was denn sonst ?
> denn ich habe auch folgende Art
> der Definition gefunden und bin mir nicht sicher welche die
> richtige bzw. die sinnvollere ist
>
> [mm]\limes_{(x,y)\rightarrow(0,0)}\bruch{f(x,y)-f(0,0)-[\bruch{\partial f}{\partial x}(1,2)](x-1)-[\bruch{\partial f}{\partial y}(1,2)](y-2)}{||(x,y)||}=0[/mm]
Das ist auch nicht das Richtige ! Richtig ist:
[mm]\limes_{(x,y)\rightarrow(0,0)}\bruch{f(x,y)-f(0,0)-[\bruch{\partial f}{\partial x}(1,2)](x-1)-[\bruch{\partial f}{\partial y}(1,2)](y-2)}{||(x,y)-(1,2)||}=0[/mm]
Man kann sich das ja leicht überlegen bei Funktionen von nur einer Variablen.
Sei I ein Intervall in [mm] \IR, [/mm] f :I [mm] \to \IR [/mm] eine Funktion und [mm] x_0 \in [/mm] I.
f ist in [mm] x_0 [/mm] differenzierbar [mm] \gdw [/mm] es ex.a [mm] \in \IR [/mm] mit [mm] \limes_{x \rightarrow x_0}\bruch{f(x)-f(x_0)}{x-x_0}=a [/mm] (in diesem Fall ist [mm] a=f'(x_0))
[/mm]
Das ist äquivalent zu
es ex.a [mm] \in \IR [/mm] mit [mm] \limes_{x \rightarrow x_0}\bruch{f(x)-f(x_0)-a(x-x_0)}{x-x_0}=0
[/mm]
Siehst Du die Differenz [mm] x-x_0 [/mm] im Zähler und im Nenner ?
FRED
>
> Grüße Schobbi
|
|
|
|