www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Definition Stetigkeit
Definition Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Stetigkeit: Tipps
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 10.01.2011
Autor: SolRakt

Hallo,

Ich habe mal eine grunssätzliche Frage zum Thema Stetigkeit. Angenommen, ich hätte die Funktion f(x) = [mm] x^{2} [/mm] +1 gegeben und ich müsste zeigen, dass dies im Punkt x=3 stetig ist.

Da hab ich doch zwei Möglichkeiten. Entweder nutze ich das [mm] \varepsilon [/mm] - Kriterium oder die Definition.

Möchte erstmal fragen, ob im Allgemeinen beide Möglichkeiten IMMER gehn. Oder gibt es auch Funktionen, wo NUR das [mm] \varepsilon [/mm] - Kriterium hilft?

Naja, zurück zur Funktion. Meine Frage ist: Wie würde man das mit der Definition machen? Das andere (Epsilon-Kriterium) versteh ich, denk ich ;)

Danke vielmals.



        
Bezug
Definition Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Mo 10.01.2011
Autor: schachuzipus

Hallo SolRakt,



> Hallo,
>  
> Ich habe mal eine grunssätzliche Frage zum Thema
> Stetigkeit. Angenommen, ich hätte die Funktion f(x) =
> [mm]x^{2}[/mm] +1 gegeben und ich müsste zeigen, dass dies im Punkt
> x=3 stetig ist.
>  
> Da hab ich doch zwei Möglichkeiten. Entweder nutze ich das
> [mm]\varepsilon[/mm] - Kriterium oder die Definition.

Was heißt denn "oder" ?

Es gibt verschiedene äquivalente Definitionen.

Etwa die über [mm]\varepsilon-\delta[/mm] oder über Folgenstetigkeit oder viel allgemeiner in topolog. Räumen: dort bedeutet Stetigkeit, dass Urbilder offener Mengen wieder offen sind ...

Du kannst alles gleichwertig verwenden.

Wie ist denn Stetigkeit bei euch "definiert" ??

>  
> Möchte erstmal fragen, ob im Allgemeinen beide
> Möglichkeiten IMMER gehn. Oder gibt es auch Funktionen, wo
> NUR das [mm]\varepsilon[/mm] - Kriterium hilft?
>  
> Naja, zurück zur Funktion. Meine Frage ist: Wie würde man
> das mit der Definition machen?

Mit welcher?

> Das andere
> (Epsilon-Kriterium) versteh ich, denk ich ;)

Es gibt doch Rechnenregeln für stetige Funktionen, etwa, dass Summe und Produkt zweier stetiger Funktionen wieder stetig sind...

Damit (und mit der Tatsache, dass konstante Fkten stetig sind), sind schon alle Polynome stetig ...

Da muss man nicht für jede Funktion beim Urknall anfangen ...

>  
> Danke vielmals.
>  
>  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]