www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Definition der Ebene im Raum
Definition der Ebene im Raum < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition der Ebene im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 26.06.2006
Autor: Pure

Hallo, also eigentlich sollten wir aus dem Buch eine Definition der Ebene im Raum abschreiben und uns so dieses Kapitel selbst beibringen. Bisher haben wir darüber noch gar nichts im Unterricht gemacht. Ich weiß, es hört sich blöd an, aber da gibt es irgendwie keine Definition, die genauso heißt. Das einzige, was wirklich sinnvoll zum dem Thema Ebenen drinsteht, ist eine Definition von der Parameterdarstellung einer Ebene.
Meine Frage ist jetzt, ob diese Definition mit der Parameterdarstellung meine gesuchte Definition ist (gesucht: Ebene im Raum).
Ich kann sie mal eben hinschreiben:

Gegeben sind ein Punkt A und zwei Vektoren u und v, die vom Nullvektor verschieden und zueinander parallel sind. Sie bestimmen eine Ebene. Für jeden Punkt X diser Ebene gilt:
[mm] \vec{ox} [/mm] = [mm] \vec{oa} [/mm] + s * [mm] \vec{u} [/mm] + [mm] t*\vec{v} [/mm]
mit gewissen Zahlen s E R, t E R.
Umgekehrt: Setzt man für s und t irgendwelche Zahlen ein, ergibt sich der Ortsvektor eines Punktes der Ebene.

Vielen Dank schon mal im Vorraus! :-)

Liebe Grüße, Pure

        
Bezug
Definition der Ebene im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 26.06.2006
Autor: leduart

Hallo pure
> Hallo, also eigentlich sollten wir aus dem Buch eine
> Definition der Ebene im Raum abschreiben und uns so dieses
> Kapitel selbst beibringen. Bisher haben wir darüber noch
> gar nichts im Unterricht gemacht. Ich weiß, es hört sich
> blöd an, aber da gibt es irgendwie keine Definition, die
> genauso heißt. Das einzige, was wirklich sinnvoll zum dem
> Thema Ebenen drinsteht, ist eine Definition von der
> Parameterdarstellung einer Ebene.
>  Meine Frage ist jetzt, ob diese Definition mit der
> Parameterdarstellung meine gesuchte Definition ist
> (gesucht: Ebene im Raum).
>  Ich kann sie mal eben hinschreiben:
>  
> Gegeben sind ein Punkt A und zwei Vektoren u und v, die vom
> Nullvektor verschieden und zueinander parallel sind. Sie

Hoffentlich nur ein Schreibfehler, NICHT parallel sind wichtig.

> bestimmen eine Ebene. Für jeden Punkt X diser Ebene gilt:
>   [mm]\vec{ox}[/mm] = [mm]\vec{oa}[/mm] + s * [mm]\vec{u}[/mm] + [mm]t*\vec{v}[/mm]

Das ist sicher eine gute Definition. Eine andere wäre : eine Ebene ist ein 2- dimensionaler affiner Unterraum des [mm] \IR^ [/mm] {3}. Aber das ist wohl eher Uni als Schule.

>  mit gewissen Zahlen s E R, t E R.
>  Umgekehrt: Setzt man für s und t irgendwelche Zahlen ein,
> ergibt sich der Ortsvektor eines Punktes der Ebene.
>  
> Vielen Dank schon mal im Vorraus! :-)

Nimm das ruhig so, besser geht es kaum.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]