| Definition neuer Zufallsvar. < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     |  | Status: | (Frage) beantwortet   |   | Datum: | 17:39 Do 10.05.2007 |   | Autor: | cutter | 
 
 | Aufgabe |  | Es seien X und Y zwei st.u. Zufallsvariablen mit X~N(0,1) und P(Y=1)=P(Y=-1)=1/2.Definiere eine neue ZV Z:=XY.Zeigen Sie: Z ist standardnormalverteilt, X und Z sind unkorreliert ,aber (X,Z) ist nicht multivariat normalverteilt
 | 
 Hallo Maeddls und Jungs=)
 
 Ich weiss schon nicht wie die neue ZV Z aussieht. Normaleweise handelt es sich ja immer um eine Faltung aber hier weiss ich wirklich nicht wie ich damit weiterrechnen soll.
 Danke im vorraus;)
 
 Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Antwort) fertig   |   | Datum: | 23:40 Do 10.05.2007 |   | Autor: | DirkG | 
 Verwende einfach die Formel der totalen Wkt bzgl. der diskreten Zufallsgröße $Y$. Konkret heißt das bei der Berechnung der Verteilungsfunktion von $Z$:
 [mm] $$\begin{array}{rcl} F_Z(t) &=& P(XY \leq t) = P(XY \leq t \bigm| Y=1)\cdot P(Y=1) + P(XY \leq t \bigm| Y=-1)\cdot P(Y=-1)\\ &\stackrel{!}{=}& P(X\cdot 1 \leq t \bigm| Y=1)\cdot P(Y=1) + P(X\cdot (-1) \leq t \bigm| Y=-1)\cdot P(Y=-1)\\ &=& P(X\leq t \bigm| Y=1)\cdot P(Y=1) + P(X\geq -t \bigm| Y=-1)\cdot P(Y=-1)\\ &=& P(X\leq t)\cdot P(Y=1) + P(X\geq -t)\cdot P(Y=-1)\end{array}$$
 [/mm]
 Es sollte klar sei, wie's weitergeht.
 
 Die Kovarianzberechnung ist ganz einfach:
 [mm] $$\operatorname{cov}(X,Z) [/mm] = E(XZ) - [mm] E(X)\cdot [/mm] E(Z) = E(X^2Y) - [mm] E(X)\cdot [/mm] E(Z) = [mm] E(X^2)\cdot [/mm] E(Y) - [mm] E(X)\cdot [/mm] E(Z) = [mm] 1\cdot 0-0\cdot [/mm] 0 = 0$$
 
 Und das dritte schließlich: $(X,Z)$ ist nicht mal eine zweidimensional stetige Zufallsgröße, denn die gesamte Wahrscheinlichkeitsmasse ist entlang der beiden Geraden (!!!)  $z=x$ und $z=-x$ konzentriert - damit kann es gar kein zweidimensional normalverteilter Zufallsvektor sein.
 
 
 
 |  |  | 
 
 
 |