www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Definitions und Wertebereich
Definitions und Wertebereich < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitions und Wertebereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Di 08.02.2011
Autor: Theoretix

Aufgabe
Geben Sie den Definitionsbereich und Wertebereich der folgenden Funktion an:

f: [mm] \IC\to\IC, z\mapsto\bruch{2}{z} [/mm]

Hallo zusammen,

Der Definitionsbereich ist doch: [mm] Df=\IC [/mm] ohne die Null oder ? Man kann doch jede Zahl aus [mm] \IC [/mm] einsetzen, bis auf die 0, weil man sonst durch Null teilt?

Der Wertebereich der Funktion müsste doch sein: Wf=(0,2] weil die größte Zahl des Intervalls 2 ist, wenn man die 1 einsetzt und wenn man z gegen unendlich laufen lässt, erhält man eine Folge die gegen Null konvergiert, deshalb das offene Intervall nach unten.

Ist das korrekt? Oder muss man da anders rangehen, weil man sich im komplexen Raum befindet?

Wäre nett, wenn mir schnell jemand helfen könnte!
Gruß

        
Bezug
Definitions und Wertebereich: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Di 08.02.2011
Autor: fencheltee


> Geben Sie den Definitionsbereich und Wertebereich der
> folgenden Funktion an:
>  
> f: [mm]\IC\to\IC, z\mapsto\bruch{2}{z}[/mm]
>  Hallo zusammen,
>  
> Der Definitionsbereich ist doch: [mm]Df=\IC[/mm] ohne die Null oder
> ? Man kann doch jede Zahl aus [mm]\IC[/mm] einsetzen, bis auf die 0,
> weil man sonst durch Null teilt?

jo

>  
> Der Wertebereich der Funktion müsste doch sein: Wf=(0,2]
> weil die größte Zahl des Intervalls 2 ist, wenn man die 1
> einsetzt und wenn man z gegen unendlich laufen lässt,
> erhält man eine Folge die gegen Null konvergiert, deshalb
> das offene Intervall nach unten.
>

und was ist mit z=0.02?

> Ist das korrekt? Oder muss man da anders rangehen, weil man
> sich im komplexen Raum befindet?
>  
> Wäre nett, wenn mir schnell jemand helfen könnte!
>  Gruß

gruß tee

Bezug
        
Bezug
Definitions und Wertebereich: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Mi 09.02.2011
Autor: fred97


> Geben Sie den Definitionsbereich und Wertebereich der
> folgenden Funktion an:
>  
> f: [mm]\IC\to\IC, z\mapsto\bruch{2}{z}[/mm]
>  Hallo zusammen,
>  
> Der Definitionsbereich ist doch: [mm]Df=\IC[/mm] ohne die Null oder
> ? Man kann doch jede Zahl aus [mm]\IC[/mm] einsetzen, bis auf die 0,
> weil man sonst durch Null teilt?
>  
> Der Wertebereich der Funktion müsste doch sein: Wf=(0,2]
> weil die größte Zahl des Intervalls 2 ist, wenn man die 1
> einsetzt und wenn man z gegen unendlich laufen lässt,
> erhält man eine Folge die gegen Null konvergiert, deshalb
> das offene Intervall nach unten.
>  
> Ist das korrekt?


Nein, es ist Quatsch.


> Oder muss man da anders rangehen,


Ja. Sei [mm] W_f [/mm] der Wertebereich von f. Klar dürfte sein: 0 [mm] \notin W_f. [/mm] Sei $w [mm] \in \IC \setminus \{0\}$. [/mm] Dann:

               $w [mm] \in W_f$ \gdw [/mm]  es ex. $z [mm] \in \IC \setminus \{0\}$ [/mm]  mit: $2/z=w$

Nun ist die Frage: hat die Gleichung $2/z=w$ eine Lösung $z [mm] \in \IC \setminus \{0\}$ [/mm]    ??

Antwort: ja !  Frage: welche ?  

Fazit: es ist [mm] W_f [/mm] = ?

FRED

>  weil man
> sich im komplexen Raum befindet?
>  
> Wäre nett, wenn mir schnell jemand helfen könnte!
>  Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]