Definitionsbereich < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:32 So 11.10.2009 | Autor: | Nils92 |
Aufgabe | Ich habe nur eine Verständnisfrage |
Meine Frage lautet: Beinhaltet das Zeichen (Reelle positive/negative Zahlen), das sind die wo über dem R noch ein + oder - steht, eigentlich auch den Wert/die Zahl 0?
zB.:
f(x)= [mm] \wurzel{\bruch{4}{-x}}
[/mm]
Dann is der Definitionsbereich ja alle negativen Zahlen und NICHT Null, da wollte ich wissen ob ich dort schreiben kann Definitionsbereich = alle negativen reelen Zahlen...
??
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:41 So 11.10.2009 | Autor: | Marcel |
Hallo Nils,
> Ich habe nur eine Verständnisfrage
> Meine Frage lautet: Beinhaltet das Zeichen (Reelle
> positive/negative Zahlen), das sind die wo über dem R noch
> ein + oder - steht, eigentlich auch den Wert/die Zahl 0?
>
> zB.:
>
> f(x)= [mm]\wurzel{\bruch{4}{-x}}[/mm]
>
> Dann is der Definitionsbereich ja alle negativen Zahlen und
> NICHT Null, da wollte ich wissen ob ich dort schreiben kann
> Definitionsbereich = alle negativen reelen Zahlen...
>
> ??
das ist Vereinbarungssache. Der eine definiert [mm] $\IR^-:=\{r \in \IR: r < 0\},\,$ [/mm] jmd. anderes vll. [mm] $\IR^-:=\{r \in \IR: r \le 0\}\,.$ [/mm]
Jmd. der [mm] $\IR^-:=\{r \in \IR: r < 0\}$ [/mm] benützt, schreibt dann vll. auch [mm] $\IR^-_0:=\{r \in \IR: r \le 0\}\,.$
[/mm]
Ähnliches gilt für die Sprechweise "negative Zahlen". Die einen meinen damit alle reellen Zahlen [mm] $<\,0$, [/mm] andere wiederum alle reellen Zahlen [mm] $\le [/mm] 0$, und sagen für alle reellen Zahlen [mm] $<\,0$ [/mm] dann "echt negative Zahlen".
Ich selbst umgehe das Problem in der Symbolik mit [mm] $\IR^-$ [/mm] meist so, dass ich einfach [mm] $\IR_<:=\{r \in \IR: r < 0\}$ [/mm] und [mm] $\IR_{\le}:=\{r \in \IR: r \le 0\}$ [/mm] schreibe. Ich denke, Du solltest aber am besten nochmal Rücksprache mit Deinem Lehrer halten, ob er [mm] $\IR^-$ [/mm] für [mm] $\IR_{<}$ [/mm] oder [mm] $\IR_{\le}$ [/mm] schreibt, und Dir am besten auch eine Begründung geben lassen, warum er dies so tut, damit Dir das im Gedächtnis bleibt.
Bzgl. [mm] $f(x)=\sqrt{\frac{-4}{x}}$ [/mm] ist der "maximale Definitionsbereich (bzgl. [mm] $\IR$)" [/mm] - was immer man damit nun auch präzise meinen mag; aber es ist intuitiv klar, was gemeint ist - sicher nicht [mm] $\IR_{\le}$, [/mm] sondern in der Tat [mm] $\IR_{<}$, [/mm] also alle reellen Zahlen [mm] $<\,0\,.$
[/mm]
P.S.:
Heuser (Lehrbuch der Analysis, Band 1, 14.Auflage) definiert z.B. [mm] $\IR^+=\{r \in \IR: r > 0\}$ [/mm] und nennt dies die Menge der positiven (reellen) Zahlen. Analog wären dann genau alle (reellen) Zahlen [mm] $<\,0$ [/mm] dann in der Menge [mm] $\IR^-$ [/mm] enthalten, und dies wäre somit (bzgl. [mm] $\IR$) [/mm] der (maximale) Definitionsbereich von [mm] $f(x)=\sqrt{\frac{-4}{x}}\,.$
[/mm]
Gruß,
Marcel
|
|
|
|