Delta-Epsilon-Kriterium < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo zusammen,
ich bin gerade am verzweifeln! Wir haben in der Schule das Delta-Epsilon-Kriterium für Stetigkeit gemacht. Was ich inhaltlich auch wirklich verstanden habe (und graphisch z.B. zeigen könnte). Aber: Ich kann das ganze nicht anwenden :-((
Wir sollen als Hausaufgabe das Ganze anhand eines gaaaanz einfachen Beispiels zeigen:
Z.B.: Zeigen Sie, dass f(x) = 3x + 5 stetig ist. Ich weiss aber absolut nicht, wie ich das mache... Kann mir da bitte jemand weiterhelfen??? Das wäre echt toll...
Gaaaanz lieben Dank,
Jenny
PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo jenny!
So ein Stetigkeitsbeweis fängt immer so an: Sei [mm] $\varepsilon [/mm] >0$ und [mm] $x\in {\cal D}(f)$. (${\cal{D}}(f)$ [/mm] ist bei mir einfach immer die Definitionsmenge von $f$...)
Jetzt musst du ein [mm] $\delta>0$ [/mm] finden, dass so zu dem [mm] $\varepsilon$ [/mm] passt, dass aus [mm] $|x-y|<\delta$ [/mm] für ein [mm] $y\in{\cal{D}}(f)$ [/mm] folgt, dass [mm] $|f(x)-f(y)|<\varepsilon$.
[/mm]
Rechne ersteinmal aus, was $|f(x)-f(y)|$ ist:
$|f(x)-f(y)|=|3x+5-(3y+5)|=|3x-3y|=3|x-y|$.
Wenn [mm] $|x-y|<\delta$ [/mm] ist, dann folgt daraus [mm] $|f(x)-f(y)|=3|x-y|<3\delta$. [/mm] Und das soll jetzt kleiner als (oder gleich) [mm] $\varepsilon$ [/mm] sein! Also definierst du dir am besten [mm] $\delta:=\bruch{\varepsilon}{3}$. [/mm] Dann folgt insgesamt:
[mm] $|f(x)-f(y)|=|3x+5-(3y+5)|=|3x-3y|=3|x-y|<3\delta=3\bruch{\varepsilon}{3}=\varepsilon$.
[/mm]
Also ist für alle $y$, deren Abstand zu $x$ kleiner ist als [mm] $\delta$, [/mm] der Abstand von $f(x)$ und $f(y)$ kleiner als [mm] $\varepsilon$.
[/mm]
Ich hoffe, dass dir das ganze dadurch ein bisschen klarer geworden ist...
Gruß, banachella
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:14 Mo 02.05.2005 | Autor: | jenny1985 |
Hallo Banachella,
gaaaaaaaaaaaaaanz lieben Dank!!! Auch wenn mich jetzt wahrscheinlich alle "richtigen" Mathematiker belächeln werden: Alleine hätte ich das nicht gekonnt...
Viele Grüsse von der
Jenny
|
|
|
|