www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Delta-Funktion
Delta-Funktion < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Delta-Funktion: aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:22 So 24.04.2005
Autor: schorschi

Hallo,
ich soll zeigen, dass die beiden Darstellungen der [mm] \delta-Ffunktion [/mm] genügen und dass ich mich dabei auf den Spezialfall f(x)=1 beschränken soll:
[mm] \delta_a(x)=(1/\pi)(a/(a²+x²)) [/mm] ,  x->0
und
[mm] \delta_n(x)=ne^{-\pi n²x²}, n->\infty [/mm]

ich hab keine Ahnung was ich tun soll...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

gruß schorschi

        
Bezug
Delta-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mo 25.04.2005
Autor: banachella

Hallo!

Genau genommen geht es darum, dass die Distributionen
[mm] $H_a(f):=\int_\IR f(x)\delta_a(x)dx$ [/mm] gegen die Delta-Distribution konvergieren. Also
[mm] $H_a(f)\to [/mm] f(0)$.
Ich glaube, dass du dich bei der ersten Aufgabe vertippt hast, hier muss wohl [mm] $a\to [/mm] 0$.

Euch wurde aber erlaubt, nur den Spezialfall $f(x)=1$ zu untersuchen. Also ist nur zu zeigen, dass [mm] $\int_\IR \delta_a(x)dx\stackrel{a\to 0}\to [/mm] 1$, und genauso für [mm] $\delta_n$. [/mm]

Ist es dir jetzt ein bisschen klarer geworden?

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]