www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Derive" - Derive 5.0 i.V.m LGS, Gauss
Derive 5.0 i.V.m LGS, Gauss < Derive < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Derive 5.0 i.V.m LGS, Gauss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Sa 13.05.2006
Autor: schmidt_as

Hallo,

ich hab ein Problem und zwar check ich nicht wie ich in Derive 5 Matritzen eigeben muss.

Es hängt vor allem am m. Die Matritz selber bekomm ich schon eingetippt nur was mach ich mit meiner Zahlenspalte wo tipp ich die ein?

Kann Derive 5 ein LGS auf Trapetzform bringen??

Vielen Dank für eure Hilfe

Alex


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: Onlinemathe.de



        
Bezug
Derive 5.0 i.V.m LGS, Gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Sa 27.05.2006
Autor: frieda

Hallo...

Zitat aus der Hilfe von Derive :-)

Um, zum Beispiel, das Gleichungssystem

5·x + 3·y - 7·z  =  4
2·x - 8·y +  z  =  6
-x + 9·y + 4·z  =  5

zu lösen, geben Sie den Ausdruck

[5, 3, -7; 2, -8, 1; -1, 9, 4]^(-1)·[4, 6, 5]

ein, der dann zum Lösungsvektor für x, y und z

[2.910596026, 0.1754966887, 1.582781456]

vereinfacht wird.

Gruß

frieda



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Derive"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]