Determinante bestimmen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:47 Di 23.01.2007 | Autor: | Blueevan |
Aufgabe | Für n [mm] \in\ [/mm] IN sei die folgende matrix A [mm] \in [/mm] Mn,n [mm] (\IR) [/mm] gegeben:
[mm] \pmat{ 1 & 2 & ... & n-1 n \\ 2 & 3 & ... & n & 0 \\ ... & ... & ... & ... \\ n-1 & n & ... & .... & 0 \\ n & 0 & ... & ... & 0 } [/mm] , d.h. [mm] aij=\begin{cases} i+j-1, & \mbox{für } \mbox{ i+j\len+1} \\ 0 & \mbox{sonst } \end{cases} [/mm] |
Hallo!
Ich verstehe diese Aufgabe nicht ganz. Kann man die Matrix nicht einfach transponieren, dann ist sie ja schon auf Dreiecksform und die Determinante ist [mm] n^{n}?
[/mm]
Ich hab eine Musterlösung dafür und laut der ist det A = [mm] (-1)^{\bruch{n}{2}}n^{n} [/mm] für n gerade und [mm] (-1)^{\bruch{n-1}{2}}n^{n} [/mm] für n ungerade.
Wie kommt man auf das [mm] (-1)^{...}? [/mm] Ich dachte das hat man nur wenn man nach einer Zeile/Spalte entwickelt.
Danke für die Hilfe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:11 Di 23.01.2007 | Autor: | statler |
Guten Tag!
> Für n [mm]\in\[/mm] IN sei die folgende matrix A [mm]\in[/mm] Mn,n [mm](\IR)[/mm]
> gegeben:
> [mm]\pmat{ 1 & 2 & ... & n-1 & n \\ 2 & 3 & ... & n & 0 \\ ... & ... & ... & ... \\ n-1 & n & ... & .... & 0 \\ n & 0 & ... & ... & 0 }[/mm]
> , d.h. [mm]aij=\begin{cases} i+j-1, & \mbox{für } \mbox{ i+j\len+1} \\ 0 & \mbox{sonst } \end{cases}[/mm]
> Ich verstehe diese Aufgabe nicht ganz. Kann man die Matrix
> nicht einfach transponieren, dann ist sie ja schon auf
> Dreiecksform und die Determinante ist [mm]n^{n}?[/mm]
'transponieren' heißt doch 'an der Hauptdiagonalen spiegeln' und dabei ändert sich nix, das Ding ist symmetrisch.
> Ich hab eine Musterlösung dafür und laut der ist det A =
> [mm](-1)^{\bruch{n}{2}}n^{n}[/mm] für n gerade und
> [mm](-1)^{\bruch{n-1}{2}}n^{n}[/mm] für n ungerade.
> Wie kommt man auf das [mm](-1)^{...}?[/mm] Ich dachte das hat man
> nur wenn man nach einer Zeile/Spalte entwickelt.
Die -1 kommt doch auch ins Geschäft, wenn ich 2 Zeilen (oder Spalten) vertausche. Aber wie mache ich durch Zeilentauschen aus der gegebenen Matrix eine vorschriftsmäßige Dreiecksmatrix? Ich vertausche die 1. und die letzte Zeile, dann die 2. und die vorletzte usw. Für gerades n geht das auf, d. h. es bleibt keine Zeile am Platz, für ungerades n bleibt die mittlere, wo sie ist. Bei jeder Tauschaktion wird die Determinante mit -1 multipliziert, und das gibt das gewünschte Resultat.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:16 Di 23.01.2007 | Autor: | Blueevan |
Oh danke schön :)
Lol ich hab ziemlich komisch gedacht :D
Das mit den Zeilen hat ich ganz vergessen.
|
|
|
|