www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Dgl. mit Laplace
Dgl. mit Laplace < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dgl. mit Laplace: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 22:01 Mi 25.01.2006
Autor: mathe_lerner

Aufgabe
(a)Man berechne die Übertra)gungsfkt. G(s), die den Übergang von u nach y vermittelt.
(b)Mit Hilfe von G(s) berechne man eine partikuläre Lsg. von (1) für u(t)= sin2t

(1)  y'''-y''+y'-y=u(t)

N'abend zusammen,

Teil (a) habe ich schon soweit gelöst:

y (dach)= [mm] \bruch{1}{s^3-s^2+s-1}*u(t) [/mm]

(das könnte man jetzt noch mit partialbruchzerleg. rücktransformieren)

(ich habe die"dach"- schreibweise  nicht finden können, sorry)

Soweit also alles klar....

Jetzt weiss ich nicht wie ich damit auf einen partik. ansatz kommen soll?
Auf konventionellem Wege könnte ich das, aber mit dieser Frage kann ich nichts anfangen.

Hat jmd. einen Denkanstoss o.ä. für mich mich?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Dgl. mit Laplace: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Sa 28.01.2006
Autor: PStefan

Hallo mathe_lerner!

Leider konnte dir keiner, innerhalb der von dir vorgegebenen Zeit, deine Frage beantworten. Nun muss ich deine Frage für Interessierte markieren.
Falls ich die Fälligkeit verlängern sollte, schreibe bitte eine private Nachricht an mich!

Vielleicht hast du nächstes Mal mehr Glück. [kleeblatt]

Liebe Grüße
PStefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]