www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Diagnalisierbarkeit
Diagnalisierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagnalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 So 21.01.2007
Autor: mathedepp_No.1

Hallo zusammen,

habe mal ne dringende Frage:

Haben in der VL folgendes definiert: die Matrix [mm] a\in M_n(\IK) [/mm] heißt diagonalisierbar, falls es Matrix P [mm] \in Gl_n(\IK) [/mm] gibt mit [mm] p*A*P^{-1} [/mm] = diagonalmatrix.

Meine frage dazu: muss dass nicht heißen [mm] P^{-1}*A*P [/mm] . habe das nämlich mal ausprobiert mit einer 3x3Matrix, und wollte prüfen ob sie diagonalisierbar ist. Sie war diagonalisierbar, jedoch mit [mm] P*A*P^{-1} [/mm] kam schlussendlich keine Diagonalmatrix raus, sondern nur mit [mm] P^{-1}*A*P. [/mm]

mache ich irgendwas falsch...oder stimmt das so??wenn ja woran liegt das???

Hoffe jemand kann mir schnell helfen!!!

Viele Grüße, der mathedepp_No.1

        
Bezug
Diagnalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 So 21.01.2007
Autor: DaMenge

Hi,

es ist doch egal, ob du jetzt die Matrix oder ihre Inverse P nennst.
nimm doch einfach [mm] $P'=P^{-1}$ [/mm] als neue Matrix P...

wichtig ist nur die Aussage, nicht die Formel !
(eine matrix ist diagonalisierbar, wenn bzgl einer Basis diagonalgestalt hat, dann sind P bzw die Inverse nur die Transformationsmatrizen und welche du jetzt von den beiden P nennst ist egal)

viele Grüße
DaMenge

Bezug
                
Bezug
Diagnalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 So 21.01.2007
Autor: mathedepp_No.1

hi DaMenge,

danke für deine schnelle Antwort, aber habe das leider immernoch nicht ganz verstanden.

es ist doch schon ein unterschied, ob ich mit der inversen von rechts oder von links multipliziere....

verstehe ich noch nicht ganz...

versuchst du's nochmal??

Viele libe Grüße, der mathedepp_No.1

Bezug
                        
Bezug
Diagnalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 21.01.2007
Autor: angela.h.b.

Hallo,

laut Definition Deiner Vorlesung ist A diagonalisierbar, wenn es eine Matrix P gibt, so daß [mm] PAP^{-1} [/mm] eine Diagonalmatrix ist.

Erlaube, daß ich die Matrix, die Du gefunden hast, Q nenne:

Du hast also eine Matrix Q, für die [mm] Q^{-1}AQ [/mm] eine Diagonalmatrix ist.

Das bekommst Du nicht in Deckung gebracht mit der Definition aus der Vorlesung, zumal  [mm] QAQ^{-1} [/mm] eben keine Diagonalmatrix ist.

So, nun bringen wir es in Deckung, indem wir eine weitere Taufe vornehmen:
Nennen wir die Matrix [mm] Q^{-1}:=R. [/mm]

Dann ist [mm] Q=(Q^{-1}){-1}=R^{-1} [/mm]

und Du kannst die Diagonalmatrix [mm] Q^{-1}AQ [/mm] schreiben als [mm] RAR^{-1}, [/mm] hast genau die Situation der Definition.
Es ist lediglich eine Frage der Benennung.

Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]