Diagonalisierbar u. Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Sei P: V->V mit P \ circ P = P Pist ein sog. Projektionsoperator.
wie kann ich jetzt zeigen, dass P diagonalisierbar ist und die Eigenwerte bestimmen? Ich weiß nicht wie die Gestalt von P aussieht, wenn sie bekannt wäre müßte ich ja für die EIgenwerte einfach det(P- [mm] \lambda [/mm] I)machen und das char. polynom lösen, oder? aber wie zeige ich, dass es diagonalisierbar ist?
gruß
stefan
|
|
|
|
Gruß!
Also, in diesem Fall geht das recht einfach, weil die Bedingung $P [mm] \circ [/mm] P = P$ sehr mächtig ist. Genauer kann man zeigen, dass nur die Eigenwerte 0 und 1 auftreten und dass die Eigenräume eine direkte Summe bilden.
ICh gebe Dir mal eine Starthilfe: Sei [mm] $U_1 [/mm] := [mm] \mbox{kern } [/mm] P$ und [mm] $U_2 [/mm] := [mm] \mbox{Bild } [/mm] P$. Dies sind Unterräume von $V$. Kannst Du zeigen, dass aus der Voraussetzung folgt, dass $V = [mm] U_1 \oplus U_2$ [/mm] gilt?
Dann bist schon beinahe durch, da $P$ auf [mm] $U_1$ [/mm] ja konstant 0 ist, also [mm] $U_1$ [/mm] gerade der Eigenraum zum Eigenwert 0 ist. Wenn Du dann noch zeigen kannst, dass die Einschränkung von $P$ auf [mm] $U_2$ [/mm] die identische Abbildung ist, bist Du schon fertig.
Viel Erfolg!
Lars
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:16 So 12.06.2005 | Autor: | Hanno |
Hallo!
Dass $P$ nur die Eigenwerte 0 und 1 haben kann, lässt sich auch wie folgt einsehen:
Hat die Abbildung $P$ den Eigenwert $k$, so hat die Abbildung [mm] $P^n$ [/mm] den Eigenwert [mm] $k^n$. [/mm] Wegen [mm] $P^n=P$ [/mm] und [mm] $k\notin \{-1,0,1\}$ [/mm] hätte $P$ dann unendlich viele verschiedene Eigenwerte, was nicht möglich ist. Der Eigenwert $-1$ kommt allerdings ebensowenig in Frage, da mit [mm] $v\in [/mm] Eig(P,-1)$ sicher [mm] $-v=f(v)\not= [/mm] f(f(v))=v$ gilt, was [mm] $P^2=P$ [/mm] widerspricht. Somit sind $0$ und $1$ die einzigen Eigenwerte von $P$.
Bemerkung:
Oh, das hätte man auch noch einfacher haben können. Ist $k$ ein Eigenwert zum Eigenvektor $v$, dann muss ja [mm] $k\cdot v=f(v)=f(f(v))=k^2\cdot [/mm] v$, also $k=0$ oder $k=1$ gelten. So einfach ist das :)
Liebe Grüße,
Hanno
|
|
|
|
|
ah ja, jetzt hab ichs verstanden, ich hab übersehen, dass p [mm] \circ [/mm] p sowas in der art ist wie [mm] p^{2}, [/mm] dann ist ja klar dass das nur für 1 und 0 geht zumindest in diesem körper.
funktioniert die diagonalisierbarkeit dann auch über diese schiene?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:23 So 12.06.2005 | Autor: | Hanno |
Hallo!
Für die Diagonalisierbarkeit lässt sich Lars Argument wunderbar anwenden:
Du musst ja lediglich eine Basis von $V$ aus Eigenvektoren finden; da $Kern P$ und $Bild P$ komplementär sind und den Eigenräumen zum Eigenwert 0 bzw. 1 entsprechen, ist die gesuchte Basis die Vereinigung zweier beliebiger Basen von $Kern P$ und $Bild P$. Bezüglich dieser Basis besitzt die Darstellungsmatrix von $P$ bei geeigneter Nummerierung die Gestalt
[mm] $\pmat{1 & 0 & 0 & 0 & 0 & \cdots & 0\\ 0 & 1 & 0 & 0 & 0 & \cdots & 0\\ 0 & 0 & \ddots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & \ddots & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0}$
[/mm]
Liebe Grüße,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:58 So 12.06.2005 | Autor: | Grapadura |
cool danke, da wäre ich jetzt nicht draufgekommen
|
|
|
|