Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:00 So 19.04.2009 | Autor: | Sacha |
Aufgabe | Es sei A = [mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm] finde Eigenwerte und Eigenvektoren und gibt falls möglich eine ähnliche Matrix D an sowie eine Matrix S damit gilt D = S A [mm] S^{-1} [/mm] |
Ich habe die Eigenwerte {1,-1} gefunden mit den Eigenvektoren [mm] {\vektor{1 \\ 1},\vektor{1 \\ -1}}. [/mm] Doch meine Frage ist nun besteht die ähnliche Diagonalmatrix aus einer Diagonalen der Eigenwerten? Wäre megafroh über eine Antwort!
|
|
|
|
Hallo Sacha,
> Es sei A = [mm]\pmat{ 0 & 1 \\ 1 & 0 }[/mm] finde Eigenwerte und
> Eigenvektoren und gibt falls möglich eine ähnliche Matrix D
> an sowie eine Matrix S damit gilt D = S A [mm]S^{-1}[/mm]
> Ich habe die Eigenwerte {1,-1} gefunden mit den
> Eigenvektoren [mm]{\vektor{1 \\ 1},\vektor{1 \\ -1}}.[/mm] Doch
> meine Frage ist nun besteht die ähnliche Diagonalmatrix aus
> einer Diagonalen der Eigenwerten? Wäre megafroh über eine
> Antwort!
Ganz recht! Die gesuchte Diagonalmatrix hat lauter Nullen, nur auf der Diagonalen stehen die Eigenwerte von A
Stopfe die Eigenvektoren als Spalten in die transformierende Matrix $S$, berechne deren Inverse und schaue, ob das richtige herauskommt, wenn du [mm] $SAS^{-1}$ [/mm] berechnest ...
LG
schachuzipus
|
|
|
|