www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierbarkeit
Diagonalisierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Do 23.02.2012
Autor: piccolo1986

Hallo,

ich hab mal ne Frage zur Diagonalisierbarkeit. Angenommen ich habe eine 3x3 Matrix A und ich möchte diese diagonalisieren. Dann kann ich doch eine Matrix P finden, sodass [mm] D=P^{-1}AP, [/mm] wobei D die Diagonalmatrix mit den Eigenwerten als Einträgen seine soll.

Ich bestimme P ja durch die Eigenvektoren zu den entsprechenden Eigenwerten und nun meine Frage. Wenn ich einen Eigenwert mit algebraischer Vielfachheit 2 habe, dann bestimme ich den entsprechenden Eigenraum (dieser hat Dimension 2) und wähle mir doch dann für die 2 benötigten Eigenvekoren für P aus diesem Eigenraum zwei beliebige Eigenvektoren, die aber senkrecht zueinander stehen, oder??


Mfg
piccolo

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Do 23.02.2012
Autor: angela.h.b.


> Hallo,
>  
> ich hab mal ne Frage zur Diagonalisierbarkeit. Angenommen
> ich habe eine 3x3 Matrix A und ich möchte diese
> diagonalisieren. Dann kann ich doch eine Matrix P finden,
> sodass [mm]D=P^{-1}AP,[/mm] wobei D die Diagonalmatrix mit den
> Eigenwerten als Einträgen seine soll.
>  
> Ich bestimme P ja durch die Eigenvektoren zu den
> entsprechenden Eigenwerten und nun meine Frage. Wenn ich
> einen Eigenwert mit algebraischer Vielfachheit 2 habe, dann
> bestimme ich den entsprechenden Eigenraum (dieser hat
> Dimension 2) und wähle mir doch dann für die 2
> benötigten Eigenvekoren für P aus diesem Eigenraum zwei
> beliebige Eigenvektoren, die aber senkrecht zueinander
> stehen, oder??

Hallo,

Du wählst zwei linear unabhängige Eigenvektoren.
Senkrecht zueinander müssen die nicht sein - dürfen sie aber.

LG Angela

>  
>
> Mfg
>  piccolo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]