www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichte von zwei Exp.Vert ZV
Dichte von zwei Exp.Vert ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichte von zwei Exp.Vert ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Di 27.02.2007
Autor: setine

Aufgabe
Aufgabe 3
X und Y sind unabhängige exponentialverteilte Zufallsvariablen mit Parametrn [mm] $\lambda_X=2$ [/mm] und [mm] $\lambda_Y=3$. [/mm] Sei nun [mm] $M:=\max{X,Y}$ [/mm] das Maximum von X und Y.

a) Welche Werte kann M annehmen und was ist die Dichte von M?

[mm] $f_M(t) [/mm] = P(M=t) = P(max(X,Y) = t) = $
[mm] $P(\{X=t\} \cup \{Y=t\}) [/mm] = $
$P(X=t)+P(Y=t) - [mm] P(\{X=t\} \cap \{Y=t\}) [/mm] = $
$P(X=t)+P(Y=t) - [mm] P(X=t)\cdot [/mm] P(Y=t) = $
[mm] $f_X(t)+$f_Y(t)-f_X(t) \cdot f_Y(t)$ [/mm]

$ [mm] \Rightarrow f_M(t) [/mm] = [mm] 2e^{-2t}+3e^{-3t}-6e^{-5t}$ [/mm]

wäre mein Resultat, was aber falsch ist gemäss Musterlösung ;)

Richtig ist dort:
[mm] $f_M(t) [/mm] = [mm] 2e^{-2t}+3e^{-3t}-5e^{-5t}$ [/mm]
(6 sollte 5 sein)


In der []Musterlösung (pdf)wird ein ganz anderer Weg eingeschlagen um die Aufgabe zu lösen. Es handelt sich hierbei um die Aufgabe 3a).


Hab ich etwas vergessen? Oder ist mein Lösungsweg sogar ganz falsch?

Vielen Dank im Voraus,
Setine



        
Bezug
Dichte von zwei Exp.Vert ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Di 27.02.2007
Autor: setine

Ich vermute den Fehler in der 2. Zeile:
$P(max(X,Y) = t) = [mm] P(\{X=t\} \cup \{Y=t\})$ [/mm]

Denn $max(X,Y)=t [mm] \Rightarrow [/mm] X=t [mm] \vee [/mm] Y=t$ aber nicht $X=t [mm] \vee [/mm] Y=t [mm] \Rightarrow [/mm] max(X,Y)=t$

Kann mans noch irgendwie retten ?

Bezug
        
Bezug
Dichte von zwei Exp.Vert ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Di 27.02.2007
Autor: luis52

Grüezi setine,

das Ganze wird meines Erachtens einfacher, wenn du zunaechst die
Verteilungsfunktion [mm] $G(t)=P(M\le [/mm] t)$ von $M$ bestimmst und die Dichte
anschliessend durch $g(t)=G'(t)$ herleitest.

Ansatz: [mm] $G(t)=P(M\le t)=P((X\le t)\cap (Y\le t))=P(X\le t)P(Y\le [/mm] t)$.
Beachte die Verwendung von [mm] "$\cap$" [/mm] und nicht [mm] "$\cup$". [/mm]

hth        

Bezug
                
Bezug
Dichte von zwei Exp.Vert ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Di 27.02.2007
Autor: setine

Ah! Bei dieser etwas anderen schreibweise als in der Musterlösung ist mir das Licht aufgegangen ;) Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]