Die Cantor-Funktion < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 19:40 Sa 14.01.2012 | Autor: | Teufel |
Aufgabe | Die Cantor-Funktion $F:[0,1] [mm] \rightarrow [/mm] [0,1]$ sei wie folgt definiert:
[mm] F(x)=\frac{1}{2} [/mm] für $x [mm] \in (\frac{1}{3}, \frac{2}{3})$, F(x)=\frac{1}{4} [/mm] für $x [mm] \in (\frac{1}{9}, \frac{2}{9})$, F(x)=\frac{3}{4} [/mm] für $x [mm] \in (\frac{7}{9}, \frac{8}{9})$ [/mm] etc. und definiere F(0)=0.
Ferner soll gelten $F(x)=sup(F(t)|t [mm] \in [0,1]\backslash [/mm] C, t<x)$ für $x [mm] \in [/mm] C$.
Zeige: F ist die stetige Verteilungsfunktion eines W-Maßes [mm] $\mu$ [/mm] welches singulär zum Lebesgue-Maß ist. |
Hi!
Irgendwie weiß ich nicht, wie ich die Funktion behandeln kann. Ich wollte erst einmal zeigen, dass F eben stetig ist, monoton, F(0)=0 und F(1)=1. Dann wäre F eben eine Verteilungsfunktion.
Aber mit dieser Definition der Cantor-Funktion finde ich es schwierig, das alles vernünftig zu zeigen.
Zur Stetigkeit:
Sei C das Cantorsche Diskontinuum. Dann ist F auf [mm] $[0,1]\backslash [/mm] C$ auf alle Fälle stetig. Probleme machen mir die Punkte in C, wo diese sup-Definition greift.
Zur Monotonie:
Anschaulich und anhand der Definition irgendwie klar, aber auch hier finde ich keine vernünftige Begründung.
F(0)=0, F(1)=1:
F(0)=0 ist klar. Und wenn ich weiß, dass F stetig ist, kann ich mir eine Folge nehmen, deren Folgenglieder immer im rechtesten Intervall des Komplements der, Cantorfolge verläuft, also wenn man [mm] $C_1=[0,1]$ [/mm] definiert, [mm] $C_2=C_1$ [/mm] ohne das mittlere Drittel, [mm] $C_3=C_2$ [/mm] ohne die mittleren Drittel der beiden Teilintervalle etc.
Nehme ich also nun eine Folge mit [mm] $x_i \in [/mm] [0,1] [mm] \backslash C_i$ [/mm] (rechtestes Intervall) für alle i, so ist [mm] $F(x_i)=\frac{2^i-1}{2^i}, [/mm] was klar gegen 1 geht (während die [mm] x_i [/mm] auch gegen 1 laufen).
Zur Singularität:
Hier habe ich noch nicht so viel drüber nachgedacht. Schön wäre es wenn direkt gelten würde: [mm] $\lambda|_{[0,1]}(C)=0$ [/mm] und [mm] $\mu(C)=1$. [/mm] Stimmt das denn? oder muss ich mir eine andere Menge wählen, um die Singularität zu testen?
Vielen Dank!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Di 17.01.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|