Differentail 1. Ordnung < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo... meine Aufgabe:
Man bestimme das Differential 1. Ordnung der Folgenden Funktion:
f(x)= arsinh [mm] \wurzel{4x-1}
[/mm]
mein eigentliches Problem ist, das ich nicht genau verstanden hab was das Differential eigentlich ist.
gruss
m.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi,
so wie ich das verstanden habe, hat man die 1. Ableitung von f nach x : f'(x) = [mm] \bruch{d f}{dx}(x). [/mm] Dann ist das totale Differential (1. Ordnung) : dy = f'(x) dx.
Gruss,
logarithmus
|
|
|
|
|
hallo nochmal,
formal hab ich das schon gesehen und es sieht logisch aus, aber was steckt hinter den einzelnen Grössen dx und dy? Und welche der Grössen aus meinem Beispiel muss ich verwenden für dx und dy?
kann mir das nochmal jemand genauer erklären?
danke ... gruss
m.
|
|
|
|
|
Hallo,
dx = [mm] x-x_0 [/mm] für ein gegebens [mm] x_0 \in \IR. [/mm] Wir wollen f(x) in einer Umgebung von [mm] x_0 [/mm] durch eine andere Funktion approxomieren, möglichst eine lineare Funktion. Die Differenz der Funktionswerte [mm] \Delta [/mm] y = [mm] f(x)-f(x_0) \approx [/mm] dy = [mm] f'(x_0)dx [/mm] ,
also dy = [mm] f'(x_0)(x-x_0).
[/mm]
Jetzt bleibt nur noch f(x) zu differenzieren. Dabei ist es wissenswert, dass die Funktion Arsinh : [mm] \IR \to \IR [/mm] die Umkehrfunktion von sinh: [mm] \IR \to \IR, [/mm] und es gilt: Arsinh(x) = [mm] ln(x+\sqrt{x^2+1}), [/mm] was das Differenzieren wesentlich erleichtert.
Gruss,
logarithmus
|
|
|
|