www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: Tipps oder Ideen willkommen
Status: (Frage) beantwortet Status 
Datum: 13:59 Mi 30.03.2022
Autor: Deltaeps

Aufgabe
Seien [mm] c\in \IR^+ [/mm] und [mm] f(0)\in \IR^+ [/mm] gegeben. Sei F'(x)=f(x) und gelte f(x)+f(x+1)=cF(x+1)-cF(x).
Bestimme F(x).

Hallo,

ich habe die Gleichung zunächst in zwei lineare inhomogene Differentialgleichungen zerlegt:

(I)  f(x) + cF(x) = g(x) und

(II) f(x+1) - cF(x+1) = -g(x)   .

Dann habe ich die homogenen Lösungen bestimmt:

Für (I) habe ich

[mm] F^{h}(x) [/mm] = [mm] k_{1}e^{-cx} [/mm] und

für (II) habe ich

[mm] F^{h}(x+1) [/mm] = [mm] k_{2}e^{cx+c}. [/mm]

Wenn ich nun mittels Variation der Konstanten versuche [mm] k_{1}(x) [/mm] und [mm] k_{2}(x) [/mm] zu bestimmen, erhalte ich zunächst

[mm] k_{1}'(x)e^{-cx} [/mm] = g(x) und

[mm] k_{2}'(x)´e^{cx+c} [/mm] = -g(x).

Wie erhalte ich daraus nun [mm] k_{1}(x) [/mm] und [mm] k_{2}(x) [/mm] ?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialgleichung: Schreibfehler korrigiert
Status: (Antwort) fertig Status 
Datum: 02:20 Do 31.03.2022
Autor: HJKweseleit


> Seien [mm]c\in \IR^+[/mm] und [mm]f(0)\in \IR^+[/mm] gegeben. Sei F'(x)=f(x)
> und gelte f(x)+f(x+1)=cF(x+1)-cF(x).
>  Bestimme F(x).
>  Hallo,
>  
> ich habe die Gleichung zunächst in zwei lineare inhomogene
> Differentialgleichungen zerlegt:

Ich gehe mal ganz anders vor:

[Dateianhang nicht öffentlich]

Im Koordinatensystem haben x und x+1 den Abstand 1. Daher gibt (f(x)+f(x+1))/2 die Fläche des Trapezes an, das durch die Verbindungsstrecke der Punkte (x|f(x)) mit (x+1|f(x+1)) entsteht (rote Linie).
Andererseits ist F(x+1)-F(x) der Wert des Integrals von x bis x+1 und damit die Fläche A zwischen x-Achse und dem Graphen.

Man findet auf jeden Fall eine Lösung des Problems, wenn die rote Linie durch f beschrieben wird, also eine Gerade ist.

Dieser Ansatz führt dann nach Integration zu

Ansatz: F(x) = [mm] ax^2+bx+k [/mm]

Dann ist f(x) = 2ax + b

Eingesetzt in die Ausgangsgleichung:

f(x)+f(x+1) = 2ax+b + 2a(x+1)+b = 4ax+2a+2b =2(2ax+a+b)     [mm] \red{(korrigiert)} [/mm]

cF(x+1)-cF(x) = [mm] c(ax^2+2ax+a+bx+b+k)-c(ax^2+bx+k)=c(2ax+a+b) [/mm]

Der Vergleich zeigt, dass c=2 sein muss, a, b und k dann beliebig sind. Wegen f(0)=b>0 muss b positiv sein.

Damit haben wir eine Lösung gefunden.

Jetzt kannst du sie für deinen Ansatz als spezielle Lösung nutzbar machen und/oder mit Hilfe der Variationsrechnung weitere Untersuchungen anstellen.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:27 Do 31.03.2022
Autor: fred97


> > Seien [mm]c\in \IR^+[/mm] und [mm]f(0)\in \IR^+[/mm] gegeben. Sei F'(x)=f(x)
> > und gelte f(x)+f(x+1)=cF(x+1)-cF(x).
>  >  Bestimme F(x).
>  >  Hallo,
>  >  
> > ich habe die Gleichung zunächst in zwei lineare inhomogene
> > Differentialgleichungen zerlegt:
>  
> Ich gehe mal ganz anders vor:
>  
> [Dateianhang nicht öffentlich]
>  
> Im Koordinatensystem haben x und x+1 den Abstand 1. Daher
> gibt (f(x)+f(x+1))/2 die Fläche des Trapezes an, das durch
> die Verbindungsstrecke der Punkte (x|f(x)) mit (x+1|f(x+1))
> entsteht (rote Linie).
>  Andererseits ist F(x+1)-F(x) der Wert des Integrals von x
> bis x+1 und damit die Fläche A zwischen x-Achse und dem
> Graphen.
>
> Man findet auf jeden Fall eine Lösung des Problems, wenn
> die rote Linie durch f beschrieben wird, also eine Gerade
> ist.
>
> Dieser Ansatz führt dann nach Integration zu
>  
> Ansatz: F(x) = [mm]ax^2+bx+k[/mm]
>  
> Dann ist f(x) = 2ax + b
>  
> Eingesetzt in die Ausgangsgleichung:
>  
> f(x)+f(x+1) = 2ax+b + 2a(x+1)+b = 4ax+2a+2b =2(ax+a+b)
>  
> cF(x+1)-cF(x) =
> [mm]c(ax^2+2ax+a+bx+b+k)-c(ax^2+bx+k)=c(2ax+a+b)[/mm]
>  
> Der Vergleich zeigt, dass c=2 sein muss, a, b und k dann
> beliebig sind. Wegen f(0)=b>0 muss b positiv sein.


Das stimmt nicht. Es muss c=1 sein und b=-a. Wählt man nun z.B. a=-1 und  b=1, so sieht man , dass die ursprüngliche Gleichung nicht erfüllt ist:

es ist dann F(x+1)-F(x)=-2x, aber f(x+1)+f(x)=-4x.


>  
> Damit haben wir eine Lösung gefunden.
>  
> Jetzt kannst du sie für deinen Ansatz als spezielle
> Lösung nutzbar machen und/oder mit Hilfe der
> Variationsrechnung weitere Untersuchungen anstellen.


Bezug
                        
Bezug
Differentialgleichung: Nanu!?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Do 31.03.2022
Autor: HJKweseleit


> > > Seien [mm]c\in \IR^+[/mm] und [mm]f(0)\in \IR^+[/mm] gegeben. Sei F'(x)=f(x)
> > > und gelte f(x)+f(x+1)=cF(x+1)-cF(x).
>  >  >  Bestimme F(x).
>  >  >  Hallo,
>  >  >  

>
> Das stimmt nicht. Es muss c=1 sein und b=-a. Wählt man nun
> z.B. a=-1 und  b=1, so sieht man , dass die ursprüngliche
> Gleichung nicht erfüllt ist:
>  
> es ist dann F(x+1)-F(x)=-2x, aber f(x+1)+f(x)=-4x.
>  

Das stimmt, aber es soll ja nicht F(x+1)-F(x)= f(x+1)+f(x) sein, sondern [mm] \red{c}F(x+1)-\red{c}F(x)= [/mm] f(x+1)+f(x), also [mm] \red{2}F(x+1)-\red{2}F(x)= [/mm] f(x+1)+f(x).

Für a = -1, b = 1 und k = 4 gilt:

F(x) = [mm] -x^2+x+4 [/mm]  und F(x+1)= [mm] -(x+1)^2+(x+1)+4 [/mm] = [mm] -(x^2+2x+1)+(x+1)+4 [/mm] = [mm] -x^2-x+4 [/mm] und damit (wobei c=2 ist)

cF(x+1)-cF(x) = 2F(x+1)-2F(x) = [mm] (-2x^2-2x+8)-(-2x^2+2x+8)= [/mm] -4x

f(x)=-2x+1 und damit

f(x+1)+f(x)=(-2x-2+1)+(-2x+1)= -4x

Bezug
                                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 31.03.2022
Autor: fred97

Aus deinem Ansatz folgt nicht c=2, sondern c=1. Rechne nochmal nach.

Bezug
                                        
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Do 31.03.2022
Autor: HJKweseleit

Ich nehme mal einfach nur F(x)=x und damit f(x)=1, also [mm] f(0)\ne [/mm] 0.

Dann ist doch f(x+1)+f(x)=1+1=2 sowie
cF(x+1)-cF(x)=c(x+1)-cx=c

Da beides übereinstimmen soll, muss c=2 sein.


Außerdem ist a=0 und b=1, also [mm] a\ne [/mm] -b.

Bezug
                                                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Do 31.03.2022
Autor: fred97


> Ich nehme mal einfach nur F(x)=x und damit f(x)=1, also
> [mm]f(0)\ne[/mm] 0.
>  
> Dann ist doch f(x+1)+f(x)=1+1=2 sowie
>  cF(x+1)-cF(x)=c(x+1)-cx=c
>  
> Da beides übereinstimmen soll, muss c=2 sein.
>  
>
> Außerdem ist a=0 und b=1, also [mm]a\ne[/mm] -b.
>  

Hier hast du für F ein Polynom vom Grad 1 genommen. In Deinem ersten Post hattest Du für F ein Plynom vom Grad 2 genommen.  In diesem Fall ist c=1. Was anderes habe ich nicht behauptet.  In deinem ersten Post hattest du dich vertan.



Bezug
                                                        
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Do 31.03.2022
Autor: HJKweseleit


> > Ich nehme mal einfach nur F(x)=x und damit f(x)=1, also
> > [mm]f(0)\ne[/mm] 0.
>  >  
> > Dann ist doch f(x+1)+f(x)=1+1=2 sowie
>  >  cF(x+1)-cF(x)=c(x+1)-cx=c
>  >  
> > Da beides übereinstimmen soll, muss c=2 sein.
>  >  
> >
> > Außerdem ist a=0 und b=1, also [mm]a\ne[/mm] -b.
>  >  
>
> Hier hast du für F ein Polynom vom Grad 1 genommen. In
> Deinem ersten Post hattest Du für F ein Plynom vom Grad 2
> genommen.  In diesem Fall ist c=1. Was anderes habe ich
> nicht behauptet.  In deinem ersten Post hattest du dich
> vertan.
>
>  

Ich verstehe deinen Einwand immer noch nicht. Im obigen Beispiel ist a=0 und b=1. Jetzt nehme ich mal a=b=1, wegen f(0)>0 will ich b nicht 0 setzen. Also:

[mm] F(x)=x^2+x, [/mm] diesmal also quadratisch.
[mm] F(x+1)=(x+1)^2+(x+1)=x^2+2x+1+x+1=x^2+3x+2 [/mm]

[mm] cF(x+1)-cF(x)=(cx^2+3cx+2c)-(cx^2+cx)=2cx+2c=c(2x+2) [/mm]

f(x)=2x+1
f(x+1)=2(x+1)+1=2x+2+1=2x+3

f(x)+f(x+1)=(2x+1)+(2x+3)=4x+4=2(2x+2)

Damit soll gelten: c(2x+2)=2(2x+2)

Wieso muss jetzt c=1 sein? und wieso a=-b?


In meinem ersten Post hat sich allerdings ein Schreibfehler eingeschlichen, vielleicht nimmst du darauf Bezug:

Statt
f(x)+f(x+1) = 2ax+b + 2a(x+1)+b = 4ax+2a+2b =2(ax+a+b)

muss es natürlich f(x)+f(x+1) = 2ax+b + 2a(x+1)+b = 4ax+2a+2b [mm] =2(\red{2}ax+a+b) [/mm] heißen.

Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:42 Fr 01.04.2022
Autor: Deltaeps

Vielen Dank für Deine Überlegungen und Deine Antwort.

> Jetzt kannst du sie für deinen Ansatz als spezielle
> Lösung nutzbar machen und/oder mit Hilfe der
> Variationsrechnung weitere Untersuchungen anstellen.

Wie mache ich das? Ich habe bereits den Eindruck, daß mein Ansatz zur Bestimmung der allgemeinen Lösung falsch ist, weil die gegensätzlichen Vorzeichen im Exponenten meiner allgemeinen "Lösungen" bewirken, daß c = 0 wäre.


Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Fr 01.04.2022
Autor: HJKweseleit


> Vielen Dank für Deine Überlegungen und Deine Antwort.
>  
> > Jetzt kannst du sie für deinen Ansatz als spezielle
> > Lösung nutzbar machen und/oder mit Hilfe der
> > Variationsrechnung weitere Untersuchungen anstellen.
>
> Wie mache ich das? Ich habe bereits den Eindruck, daß mein
> Ansatz zur Bestimmung der allgemeinen Lösung falsch ist,
> weil die gegensätzlichen Vorzeichen im Exponenten meiner
> allgemeinen "Lösungen" bewirken, daß c = 0 wäre.
>  

Das sehe ich genau so.

Ich habe mal versucht, ob ein Polynom 3. Grades möglich wäre, aber das geht - auch mit einem veränderten c - nicht.
Weitere Versuche meinerseits (e-Fkt., sin-Fkt., ...) sind ebenfalls gescheitert.

Wie hier eine Variationsrechnung aussehen könnte, weiß ich auch nicht. Vielleicht haben wir ja die einzigen Lösungen schon erfasst.


Bezug
        
Bezug
Differentialgleichung: Lösung für Polynome
Status: (Antwort) fertig Status 
Datum: 15:42 Sa 02.04.2022
Autor: HJKweseleit

Für Polynome habe ich alle Lösungen gefunden.

Sei F(x) ein Polynom, für das gilt:

Es gibt ein C>0, so dass für alle x [mm] \in \IR [/mm] gilt: f(x+1)+f(x)=C(F(x+1)-F(x))  mit f(x)=F'(x).

Behauptung: Das Polynom hat höchstens den Grad 2 (und für f(0) [mm] \ne [/mm] 0 mindestens den Grad 1).

Beweis:
Sei F ein Polynom mit Grad > 2. Dann ist F beliebig oft diffbar, und es gilt:

f(x+1)+f(x)=C(F(x+1)-F(x))                     beide Seiten ableiten [mm] \Rightarrow [/mm]
f'(x+1)+f'(x)=C(F'(x+1)-F'(x))=C(f(x+1)+f(x))  beide Seiten ableiten [mm] \Rightarrow [/mm]
f''(x+1)+f''(x)=C(f'(x+1)+f'(x))               beide Seiten ableiten [mm] \Rightarrow [/mm]
f'''(x+1)+f'''(x)=C(f''(x+1)+f''(x))           beide Seiten ableiten [mm] \Rightarrow [/mm]
usw.,

bis auf der rechten Seite die beiden Polynome den Grad 3 haben.

Für diese muss also auch die obige Eigenschaft gelten. Ich zeige, dass das für ein Polynom 3. Grades nicht möglich ist. Das steht dann im Widerspruch dazu, dass auch für ein Polynom höheren Grades diese Eigenschaft  gilt, da diese Eigenschaft sich ja sonst, wie soeben gezeigt, bis zum 3. Grad "herunter-vererbt" hätte.

Sei nun F(x) = [mm] ax^3+bx^2+dx+e [/mm] mit [mm] a\ne [/mm] 0.

Dann ist F(x+1)= [mm] a(x+1)^3+b(x+1)^2+d(x+1)+e=(ax^3+3ax^2+3ax+a)+(bx^2+2bx+b)+(dx+d)+e=ax^3+(3a+b)x^2+(3a+2b+d)x+a+b+d+e [/mm]

und [mm] F(x+1)-F(x)=3ax^2+(3a+2b)x+a+b+d [/mm]

Es ist [mm] f(x)=3ax^2+2bx+d [/mm]  und
[mm] f(x+1)=3a(x+1)^2+2b(x+1)+d=3ax^2+6ax+3a+2bx+2b+d, [/mm] also

[mm] f(x)+f(x+1)=6ax^2+(6a+4b)x+3a+2b+2d [/mm]

Nun müsste gelten:

[mm] 6ax^2+(6a+4b)x+3a+2b+2d=C(3ax^2+(3a+2b)x+a+b+d) [/mm]

Aus [mm] 6ax^2=C*3ax^2 [/mm] folgt wieder C=2 und damit

[mm] 6ax^2+(6a+4b)x+3a+2b+2d=6ax^2+(6a^2+4b)x+2a+2b+2d, [/mm] also

a=0 im Widerspruch dazu, dass F 3. Grades war.

Dass jedes Polynom 2. oder 1. Grades eine Lösung ist, habe ich schon in meinem ersten Post gezeigt.

Hat man eine Funktion mit unendlicher Taylorentwicklung (z.B. sin- oder e-Fkt.), lässt sich die Argumentation nicht anwenden, weil man durch ständiges Ableiten nicht zu einer Fkt. 3. Grades kommt und daher die obige Summe weiterhin unendlich viele Glieder hat, so dass ein Koeffizientenvergleich so nicht möglich ist.



Experimente mit meinem Matheprogramm mit Polynomen höheren Grades zeigen: C muss immer 2 sein, damit auf der linken und rechten Seite die Koeffizienten der höchsten x-Potenzen übereinstimmen. Ist der Grad von F > 2, so ist dann die Differenz zwischen der linken und der rechten Seite der Gleichung immer ein Polynom, dessen Grad um 3 kleiner als der Grad von F ist (also bei Grad(F)=3 vom Grad 0, eine Konstante =a [mm] \ne [/mm] 0, wie oben gezeigt, bei Grad(F)=4 vom Grad 1 usw.).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]