Differentialoperatoren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo Zusammen,
ich habe leider erneut eine Frage zu folgender Aufgabe:
Bestimmen Sie [mm] \alpha>0 ,\lambda \in \IR [/mm] so, daß [mm] \Gamma_\alpha (\vec{x}) :\IR^3\to\IR [/mm] mit [mm] \Gamma_\alpha (\vec{x})=exp(-\alpha|\vec{x}|^2)
[/mm]
die Schrödingergleichung [mm] -\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x}) [/mm] erfüllt.
[mm] |\vec{x}|^2=x_1^2+x_2^2+x_3^2, [/mm] da es sich um die euklidische Norm handelt.
Leider hat es sich damit auch schon fast wieder erledigt und ich weiß leider nicht so ganz richtig wie ich an diese ganze Aufgabe rangehen soll...
Ich habe nun schon bei google die letzte Stunde damit verbracht etwas brauchbares zu finden, jedoch leider ohne Erfolg.
Ich wäre euch für kleine Denkanstöße sehr dankbar und hoffe, dass ich auf eure Hilfe zählen kann...
Keine Komplettlösung nur Denkanstöße.
mfg dodo4ever
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:15 Mi 04.01.2012 | Autor: | fred97 |
> Hallo Zusammen,
>
> ich habe leider erneut eine Frage zu folgender Aufgabe:
>
> Bestimmen Sie [mm]\alpha>0 ,\lambda \in \IR[/mm] so, daß
> [mm]\Gamma_\alpha (\vec{x}) :\IR^3\to\IR[/mm] mit [mm]\Gamma_\alpha (\vec{x})=exp(-\alpha|\vec{x}|^2)[/mm]
>
> die Schrödingergleichung
> [mm]-\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x})[/mm]
> erfüllt.
>
> [mm]|\vec{x}|^2=x_1^2+x_2^2+x_3^2,[/mm] da es sich um die
> euklidische Norm handelt.
>
> Leider hat es sich damit auch schon fast wieder erledigt
> und ich weiß leider nicht so ganz richtig wie ich an diese
> ganze Aufgabe rangehen soll...
>
> Ich habe nun schon bei google die letzte Stunde damit
> verbracht etwas brauchbares zu finden, jedoch leider ohne
> Erfolg.
>
> Ich wäre euch für kleine Denkanstöße sehr dankbar und
> hoffe, dass ich auf eure Hilfe zählen kann...
>
> Keine Komplettlösung nur Denkanstöße.
Berechne doch mal
[mm] \Delta\Gamma_\alpha(\vec{x}) [/mm] !!!
Setze dann ein in
$ [mm] -\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x}) [/mm] $
und schau, welche Informationen Du zu [mm] \alpha [/mm] und [mm] \Lambda [/mm] bekommst.
Ist eigentlich [mm] \Lambda [/mm] = [mm] \lambda [/mm] ??
FRED
>
> mfg dodo4ever
|
|
|
|
|
Hallo fred und danke für deine Hilfe...
Ja es soll [mm] \Lambda=\lambda [/mm] sein. Hatte ausversehen mit L statt l angefangen.
Dein Tipp vereinfacht natürlich zunächst einiges.
Also es gilt, wie schon im ersten Beitrag geschrieben, die euklidische Norm, mit [mm] |\vec{x}|^2=x_1^2+x_2^2+x_3^2
[/mm]
Somit gilt für [mm] \Gamma_\alpha (\vec{x})=exp(-\alpha |\vec{x}|^2)=e^{-\alpha|\vec{x}|^2}=e^{-\alpha(x_1^2+x_2^2+x_3^2)}
[/mm]
Das eingesetzt in die Schrödinger Gleichung [mm] -\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x}) [/mm] ergibt somit:
[mm] -\Delta e^{-\alpha(x_1^2+x_2^2+x_3^2)}+|\vec{x}|^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\Lambda e^{-\alpha(x_1^2+x_2^2+x_3^2)}
[/mm]
[mm] \Rightarrow -\Delta+x_1^2+x_2^2+x_3^2=\lambda
[/mm]
Wobei ich das doch eigentlich auch schon aus der Schrödingergleichung selbst hätte herleiten können oder?
[mm] -\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x})
[/mm]
[mm] \Rightarrow -\Delta+|\vec{x}|^2=\lambda [/mm] und dann die euklidische Norm einsetzen...
mfg dodo4ever
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:35 Mi 04.01.2012 | Autor: | fred97 |
> Hallo fred und danke für deine Hilfe...
>
> Ja es soll [mm]\Lambda=\lambda[/mm] sein. Hatte ausversehen mit L
> statt l angefangen.
>
> Dein Tipp vereinfacht natürlich zunächst einiges.
>
> Also es gilt, wie schon im ersten Beitrag geschrieben, die
> euklidische Norm, mit [mm]|\vec{x}|^2=x_1^2+x_2^2+x_3^2[/mm]
>
> Somit gilt für [mm]\Gamma_\alpha (\vec{x})=exp(-\alpha |\vec{x}|^2)=e^{-\alpha|\vec{x}|^2}=e^{-\alpha(x_1^2+x_2^2+x_3^2)}[/mm]
>
> Das eingesetzt in die Schrödinger Gleichung
> [mm]-\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x})[/mm]
> ergibt somit:
>
> [mm]-\Delta e^{-\alpha(x_1^2+x_2^2+x_3^2)}+|\vec{x}|^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\Lambda e^{-\alpha(x_1^2+x_2^2+x_3^2)}[/mm]
>
> [mm]\Rightarrow -\Delta+x_1^2+x_2^2+x_3^2=\lambda[/mm]
Was hast Du denn da gemacht???? Hast Du einfach [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)} [/mm] gekürzt ?? Wenn ja, so ist das Quatsch !
Dir scheint nicht klar zu sein, was [mm] \Delta [/mm] f bedeutet !
FRED
>
> Wobei ich das doch eigentlich auch schon aus der
> Schrödingergleichung selbst hätte herleiten können
> oder?
>
> [mm]-\Delta\Gamma_\alpha(\vec{x})+|\vec{x}|^2\Gamma_\alpha (\vec{x})=\Lambda\Gamma_\alpha(\vec{x})[/mm]
>
> [mm]\Rightarrow -\Delta+|\vec{x}|^2=\lambda[/mm] und dann die
> euklidische Norm einsetzen...
>
> mfg dodo4ever
>
|
|
|
|
|
Ja das ist mit verlaub quatsch... Hatte in einem anderen Beitrag schonmal [mm] \Delta [/mm] dabei. Dort wusste ich noch was es zu bedeuten hat...
Hier nun die korrigierte Fassung:
[mm] -\Delta e^{-\alpha(x_1^2+x_2^2+x_3^2)}+|\vec{x}|^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\Lambda e^{-\alpha(x_1^2+x_2^2+x_3^2)}
[/mm]
[mm] \Rightarrow [/mm] -div(grad [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)})+(x_1^2+x_2^2+x_3^3)e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\Lambda e^{-\alpha(x_1^2+x_2^2+x_3^2)}
[/mm]
mfg dodo4ever
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:44 Mi 04.01.2012 | Autor: | fred97 |
> Ja das ist mit verlaub quatsch... Hatte in einem anderen
> Beitrag schonmal [mm]\Delta[/mm] dabei. Dort wusste ich noch was es
> zu bedeuten hat...
>
> Hier nun die korrigierte Fassung:
>
> [mm]-\Delta e^{-\alpha(x_1^2+x_2^2+x_3^2)}+|\vec{x}|^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\Lambda e^{-\alpha(x_1^2+x_2^2+x_3^2)}[/mm]
>
> [mm]\Rightarrow[/mm] -div(grad
> [mm]e^{-\alpha(x_1^2+x_2^2+x_3^2)})+(x_1^2+x_2^2+x_3^3)e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\Lambda e^{-\alpha(x_1^2+x_2^2+x_3^2)}[/mm]
>
> mfg dodo4ever
Ja, Mann, dann berechne doch
-div(grad [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)})
[/mm]
FRED
|
|
|
|
|
Alles klar, ich denke ich habs...
es gilt für
grad [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\vektor{-2x_1 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)} \\ -2x_2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)} \\ -2x_3 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}}
[/mm]
und es gilt für
div(grad [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)})=-2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 x_1^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}-2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 x_2^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}-2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 x_3^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}
[/mm]
bzw. ist div(grad [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)})=-6 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)} (x_1^2+x_2^2+x_3^2)
[/mm]
bzw. ist div(grad [mm] e^{-\alpha(x_1^2+x_2^2+x_3^2)})=2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}(2 \alpha x_1^2+2 \alpha x_2^2+2 \alpha x_3^2-3)
[/mm]
Ich setze das ganze nun in die Schrödingergleichung ein und es ergibt sich:
- [mm] 2\alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}(2 \alpha x_1^2+2 \alpha x_2^2+2 \alpha x_3^2-3)+(x_1^2+x_2^2+x_3^2)e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\lambda(e^{-\alpha(x_1^2+x_2^2+x_3^2)})
[/mm]
Und das ergibt nun aber [mm] -4\alpha^2x_1^2 -4\alpha^2 x_2^2 -4\alpha^2 x_3^2+6\alpha+x_1^2+x_2^2+x_3^2=\lambda
[/mm]
bzw. [mm] -4\alpha^2(x_1^2+x_2^2+x_3^2)+6\alpha+(x_1^2+x_2^2+x_3^2)-\lambda=0
[/mm]
Und somit erhalte ich die Gleichung:
[mm] \alpha^2-\bruch{3}{2(x_1^2+x_2^2+x_3^2)}\alpha-\bruch{1}{4}+\bruch{1}{4(x_1^2+x_2^2+x_3^2)}\lambda=0
[/mm]
mfg dodo4ever
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:58 Mi 04.01.2012 | Autor: | notinX |
Hallo,
> Alles klar, ich denke ich habs...
>
> es gilt für
>
> grad [mm]e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\vektor{-2x_1 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)} \\ -2x_2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)} \\ -2x_3 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}}[/mm]
>
> und es gilt für
>
> div(grad [mm]e^{-\alpha(x_1^2+x_2^2+x_3^2)})=-2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 x_1^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}-2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 x_2^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}-2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 x_3^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)}[/mm]
>
>
> bzw. ist div(grad [mm]e^{-\alpha(x_1^2+x_2^2+x_3^2)})=-6 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}+4 \alpha^2 e^{-\alpha(x_1^2+x_2^2+x_3^2)} (x_1^2+x_2^2+x_3^2)[/mm]
>
> bzw. ist div(grad [mm]e^{-\alpha(x_1^2+x_2^2+x_3^2)})=2 \alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}(2 \alpha x_1^2+2 \alpha x_2^2+2 \alpha x_3^2-3)[/mm]
>
> Ich setze das ganze nun in die Schrödingergleichung ein
> und es ergibt sich:
>
> - [mm]2\alpha e^{-\alpha(x_1^2+x_2^2+x_3^2)}(2 \alpha x_1^2+2 \alpha x_2^2+2 \alpha x_3^2-3)+(x_1^2+x_2^2+x_3^2)e^{-\alpha(x_1^2+x_2^2+x_3^2)}=\lambda(e^{-\alpha(x_1^2+x_2^2+x_3^2)})[/mm]
>
> Und das ergibt nun aber [mm]-4\alpha^2x_1^2 -4\alpha^2 x_2^2 -4\alpha^2 x_3^2+6\alpha+x_1^2+x_2^2+x_3^2=\lambda[/mm]
>
> bzw.
> [mm]-4\alpha^2(x_1^2+x_2^2+x_3^2)+6\alpha+(x_1^2+x_2^2+x_3^2)-\lambda=0[/mm]
>
> Und somit erhalte ich die Gleichung:
>
> [mm]\alpha^2-\bruch{3}{2(x_1^2+x_2^2+x_3^2)}\alpha-\bruch{1}{4}+\bruch{1}{4(x_1^2+x_2^2+x_3^2)}\lambda=0[/mm]
>
> mfg dodo4ever
stimmt alles, die letzte Gleichung lässt sich aber noch etwas übersichtlicher schreiben:
[mm] $\alpha^2-\frac{3\alpha}{2|\vec{x}|^2}+\frac{\lambda-|\vec{x}|^2}{4|\vec{x}|^2}=0$
[/mm]
Gruß,
notinX
|
|
|
|