www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differentiation vom Integral
Differentiation vom Integral < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation vom Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mo 01.09.2008
Autor: DonRotti

Aufgabe
[mm] Q=\integral_{a}^{b}{D dA} [/mm]

Hallo zusammen,

was muss ich machen, wenn ich die Formel nach D auflösen will?
Kann ich einfach das Integral ableiten und Q auch?

Vielen Dank für die Hilfe.

        
Bezug
Differentiation vom Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 01.09.2008
Autor: felixf

Hallo

> [mm]Q=\integral_{a}^{b}{D dA}[/mm]
>  Hallo zusammen,
>  
> was muss ich machen, wenn ich die Formel nach D auflösen
> will?
>  Kann ich einfach das Integral ableiten und Q auch?

Ich nehme mal an $Q$, $a$ und $b$ sind feste Zahlen und $D$ ist eine Funktion abhaengig von $A$?

Das kannst du nicht wirklich aufloesen, insb. weil es keine eindeutige Loesung gibt. Eine moegliche Loesung ist immer die konstante Funktion [mm] $\frac{Q}{b - a}$. [/mm]

Oder ist $Q$ eine Funktion abhaengig von $b$? Dann hilft ableiten tatsaechlich weiter, zumindest wenn $D$ stetig ist.

LG Felix


Bezug
                
Bezug
Differentiation vom Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mo 01.09.2008
Autor: DonRotti

D ist keine Funktion von A, sondern spezieller Wert.
Das Integral ist ein Ringintegral über A.

Kann ich dann nicht einfach:

dQ= [mm] D\*dA [/mm]

Bezug
                        
Bezug
Differentiation vom Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mo 01.09.2008
Autor: Merle23


> D ist keine Funktion von A, sondern spezieller Wert.

Dann gilt doch [mm]Q = \integral_{a}^{b}{D dA} = D\integral_{a}^{b}{dA} \gdw D = \frac{Q}{\integral_{a}^{b}{dA}}[/mm]

>  Das Integral ist ein Ringintegral über A.
>  

Was ist das? Hab noch nie von "Ringintegral" gehört.

> Kann ich dann nicht einfach:
>
> dQ= [mm]D\*dA[/mm]  

Nein, denn hier verschlampst du die Integralgrenzen.

Bezug
                                
Bezug
Differentiation vom Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Mo 01.09.2008
Autor: DonRotti

Ringintegrale sind Kurven-, Lienien- oder Wegintegrale über eine geschlossene Kurve.

Bezug
                        
Bezug
Differentiation vom Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 Mo 01.09.2008
Autor: angela.h.b.


> D ist keine Funktion von A, sondern spezieller Wert.
>  Das Integral ist ein Ringintegral über A.
>  
> Kann ich dann nicht einfach:
>
> dQ= [mm]D\*dA[/mm]  

Hallo,

ich kapiere recht, worum es geht.

Was ist jetzt mit Integral über A gemeint? ist A eine geschlossene Kurve? Was für eine? Was haben a und b mit dieser Kurve zu tun?

D ist wirklich eine Konstante?

Vielleicht erzählst Du auch mal was über den Zusammenhang, in dem das Problem auftaucht.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]