www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Differenzengleichung
Differenzengleichung < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 Mi 08.06.2011
Autor: Cyantific

Aufgabe
Berechnen Sie die Gesamtlösung der DFG.


Hallo,

falls das hier dass falsche Forum sein sollte, bitte entschuldigt.

Ich habe eine Frage zu meinen Aufschrieben bezüglich Differenzengleichungen.

Wir haben unsere Aufschriebe verdeutlicht indem wir sagten:

[mm] y_{t}= [/mm] Kontostand nach der Zinsperiode t
q= Zinsfaktor
r=Sparrate

Also:
[mm] y_{t+1}=q*y_{t}+r [/mm] oder [mm] y_{t}=q*y_{t-1}+r [/mm]
--> [mm] y_{t}=q*(q*y_{t-2}+r)+r [/mm]
Es ergibt sich:
[mm] q^{i}*y_{t-i}+q^{i-1}*r+q^{i-2}*r+....r [/mm]
--> [mm] q^{i}*y_{t-i}+r\summe_{k=0}^{i-1}q^{i} [/mm]

Hier entsteht meine erste Zwischenfrage, die treffenderweise wahrscheinlich eher zum Thema Reihen gehört. Vlt. könnt ihr mir sie dennoch beantworten.

Wieso benutzt er bei der Summe für den Anfang k und für das Ende i-1?
Die Summe könnt doch auch so heißen: [mm] r\summe_{n=1}^{m}q^{i-n}?! [/mm]

Es ergibt sich:
[mm] q^{i}*y_{t-i}+r*(q^{i}-1)/q-1 [/mm]
für i=t:
[mm] y_{t}=q^{t}*y_{0}+r*(q^{t}-1)/q-1 [/mm]

Wie bearbeiteten eine Beispielaufgabe, bei der meine eigentliche Frage aufkommt.

[mm] y_{t+1}-a*y_{t}-s [/mm]
hat als Gesamtlösung [mm] y_{t}=k*a^{t}*y_{0}+s/1-a. [/mm]

Warum nicht [mm] y_{t}=k*a^{t}*y_{0}+s*(a^{t}-1)/(a-1) [/mm] wie oben?
Ist doch genau das gleiche.

edit: Hab jetzt noch mal nachgeschaut, es gibt mehrere Lösungen die ich aufgeschrieben habe, aber welche jetzt relevant für was ist hab ich keine Ahnung. Hoffentlich könnt ihr mir helfen!

[mm] y_{t+1}-a*y_{t}-s [/mm]

hat die Lösungen:

1) [mm] y_{t}=a^{t}*y_{0} [/mm] (homogen)
2) [mm] y_{t}=s/1-a [/mm] (partikulär)
3) [mm] y_{t}=k*a^{t}*y_{0}+s/1-a [/mm] (gesamt)
4) [mm] y_{t}=b*a^{t}+s/1-a [/mm] für [mm] a\not=1 [/mm] ; [mm] y_{0}+t+s [/mm] für a=1
Des weiteren schreibt mein Dozent dann [mm] y_{t}=c*d^{t} [/mm]

Versteh nichts mehr. Welche Lösung ist für was?


Danke im Voraus!








        
Bezug
Differenzengleichung: Teilantwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mi 08.06.2011
Autor: schachuzipus

Hallo Cyantific,

> Berechnen Sie die Gesamtlösung der DFG.
> Hallo,
>
> falls das hier dass falsche Forum sein sollte, bitte
> entschuldigt.
>
> Ich habe eine Frage zu meinen Aufschrieben bezüglich
> Differenzengleichungen.
>
> Wir haben unsere Aufschriebe verdeutlicht indem wir
> sagten:
>
> [mm]y_{t}=[/mm] Kontostand nach der Zinsperiode t
> q= Zinsfaktor
> r=Sparrate
>
> Also:
> [mm]y_{t+1}=q*y_{t}+r[/mm] oder [mm]y_{t}=q*y_{t-1}+r[/mm]
> --> [mm]y_{t}=q*(q*y_{t-2}+r)+r[/mm]
> Es ergibt sich:
> [mm]q^{i}*y_{t-i}+q^{i-1}*r+q^{i-2}*r+....r[/mm]




[mm]\blue{=...+r\cdot{}(q^{i-1}+q^{i-2}+\ldots+q^0)}[/mm]




> --> [mm]q^{i}*y_{t-i}+r\summe_{k=0}^{i-1}q^{i}[/mm] [notok]

Das ist doch schon Kokolores, nach dem "+" steht [mm]r\cdot{}(\underbrace{q^{i}+q^{i}+\ldots q^{i}}_{\text{i-mal}})[/mm]

[mm]=r\cdot{}i\cdot{}q^{i}[/mm]

Der Laufindex [mm]k[/mm] ist doch von dem Term, pber den summiert wird, also [mm]q^{i}[/mm] völlig unabh., du summierst für [mm]k=0 ... i-1[/mm] über den konstanten Term [mm]q^{i}[/mm], von [mm]k=0...i-1[/mm] sind es i Summanden ...

Richtig wäre [mm]...+r\cdot{}\sum\limits_{k=0}^{i-1}q^{\red{k}}[/mm]

Schreibe dir diese Summe aus und du erhältst den Klammerausdruck von weiter oben in blau, also [mm](q^{i-1}+q^{i-2}+...+q^0)[/mm] in umgekehrter Reihenfolge


>
> Hier entsteht meine erste Zwischenfrage, die
> treffenderweise wahrscheinlich eher zum Thema Reihen
> gehört. Vlt. könnt ihr mir sie dennoch beantworten.
>
> Wieso benutzt er bei der Summe für den Anfang k

Der Anfang ist nicht k, sondern 0 !!

> und für
> das Ende i-1?
> Die Summe könnt doch auch so heißen:
> [mm]r\summe_{n=1}^{m}q^{i-n}?![/mm]

Nein, das ist Oberquark, schreibe das doch mal aus, da steht: [mm]r\cdot{}(q^{i-1}+q^{i-2}+q^{i-3}+\ldots+q^{i-(m-1)}+q^{i-m})[/mm]

Das steht nun in keinem Zusammenhang zu der richtigen Summe oben ...

>
> Es ergibt sich:
> [mm]q^{i}*y_{t-i}+r*(q^{i}-1)/q-1[/mm]

Ja, das ist die Formel für die endliche geometrische Reihe

> für i=t:
> [mm]y_{t}=q^{t}*y_{0}+r*(q^{t}-1)/q-1[/mm]
>


Gruß

schachuzipus

Bezug
        
Bezug
Differenzengleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Fr 10.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]