Differenzialgleichung (Jet) < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | James Bond hat aus dem SPECTRE-Hauptquartier den gestohlenen Prototypen eines neuen Harrier-Kampfjets (Masse: m=7t) zurückgestohlen. Leider wurde das Flugzeug auf der Flucht schwer beschädigt, sodass 007 gezwungen ist, auf dem Flugzeugträger HMS Invincible notzulanden. Da die Landebahn nur eine Länge von [mm] l=200m [/mm] hat, und Bond mit einer Geschwindigkeit von [mm] v_0 = 300km/h [/mm] landen muss, wurde die Landebahn mit einem von Q erfundenen Super-Bremsschaum eingesprüht, welche eine Bremskraft auf ein landendes Flugzeug proportional zu seiner Geschwindigkeit ausübt. Der Bremskoeffizient c des Super-Schaumes wurde leider noch nicht genau bestimmt.
a) Stellen Sie die allgemeine Bewegungsgleichung für dieses Szenario auf!
b) Bestimmen Sie die Fundamentallösungen der Bewegungsgleichung und stellen Sie die allgemeine Lösung auf!
c) Nehmen Sie an, dass Bond den Beginn der Landebahn zum Zeitpunkt t=0 mit der Geschwindigkeit [mm] v_0 [/mm] erreicht und bestimmen Sie die Weg-Zeit-Funktion seines Jets!
d) Nach welcher Strecke und welcher Zeit kommt das Flugzeug zum Stillstand?
e) Setzen Sie nun die Zahlenwerte ein und bestimmen Sie, welchen Wert der Bremskoeffizient von Qs Super-Schaum haben muss, damit der Jet korrekterweise genau am Ende der Landebahn zum Stehen kommt! |
Meine Idee war jetzt für die Bewegungsgleichung
[mm]s(t)= v_0 \cdot t + 1/2 s''(t) \cdot t^2 [/mm]. Die Bremskraft soll proportional zur Geschwindigkeit sein, also [mm] F(t)= -m \cdot a(t) = c \cdot v(t) [/mm] also [mm] s''(t) = - \bruch {c} {m} \cdot s'(t) [/mm]. Das kann man ja jetzt in die erste Gleichung einsetzen: [mm] s(t)= v_0 \cdot t - \bruch {c} {2m} s'(t) \cdot t^2 [/mm]. Jetzt müsste ich ja erstmal die allgemeine Lösung der homogenen DGL (Differenzialgleichung) bestimmen. Dafür erhalte ich
[mm] s(t)= A \cdot e^{-\bruch {2m} {ct}} [/mm]. Meine Fragen:
Ist mein Ansatz überhaupt richtig? Ist meine Lösung richtig? Wie kann ich die Lösung der inhomogenen DGL bestimmen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:48 Mo 10.11.2008 | Autor: | leduart |
Hallo
Deine Gleichung fuer s(t) gilt doch nur fur konstante Beschleunigun. schon, dass du da s'' hingeschrieben hast ist falsch.
richtig ist die Kraftgleichung F=-c*s'(t)
und F=m*s''(t) Anfangsbedingung [mm] v=v_0, [/mm] s=0
Dann die einfache Dgl loesen.
gruss leduart
|
|
|
|
|
Okay danke, dann haben wirs jetzt.
|
|
|
|