www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differenziation
Differenziation < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenziation: Textaufgabe
Status: (Frage) beantwortet Status 
Datum: 18:47 So 28.01.2007
Autor: Stromberg

Aufgabe
Der Winkel an einer Rampenkante (oben) soll 45° betragen. Für die Ablaufkurve der Rampe wurde eine Parabel mit folgender Funktionsgleichung gewählt: f(x) = [mm] 0,2mx^2 [/mm] (das m steht offensichtlich für Meter)

a) Wie lang und wie hoch muß die Rampe sein, damit die obigen Bedingungen zutreffen?

b) Die Rampe soll 3m lang sein. Welche Höhe muss sie haben, damit der Winkel an der Kante nach wie vor 45° ist?

Hallo und guten Abend,

ich habe heute den ganzen Tag Ableitungen geübt und unter anderem auch die oben genannte Textaufgabe bearbeitet.
Teil a) denke ich auch soweit gelöst zu haben aber beim Teil b) hänge ich leider.
Vielleicht kann mir jemand dabei helfen...würde mich sehr freuen.

Berechnung Teil a)

f(x) = 0,2m [mm] x^2 [/mm]     alpha = 45° somit Tang 1
f'(x) = 0,4m x
1=0,4x / :o,4
x=2,5

eingesetzt in die erste Gleichung ergibt sich folgender Punkt P(2,5/1,25)

soweit so gut...aber bei Teil b) weiß ich leider nicht wie ich vorgehen muss.

Vielleicht kann mir jemand helfen.


Gruß,
Stephan

        
Bezug
Differenziation: Antwort
Status: (Antwort) fertig Status 
Datum: 02:19 Mo 29.01.2007
Autor: leduart

Hallo
Bei b) ist fast sicher ne andere Parabel gesucht, also [mm] y=a*x^2, [/mm] a so bestimmen, dass bei x=3 f'(3)=1 ist. wenn du a hast ist dann y(3) die gesuchte Hoehe.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]