www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Differenzierbarkeit
Differenzierbarkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:11 Do 06.12.2007
Autor: Denny22

Hallo an alle,

ich habe da mal eine Verständnisfrage:

Sei $X$ ein Funktionenraum (genauer ein Hilbertraum, bei mir: [mm] $H_0^1(\Omega)$) [/mm] und [mm] $S:\IR_{+}\times X\longrightarrow [/mm] X$ eine Abbildung.

Ich muss zeigen, dass [mm] $S(\bullet)\bullet\in C^1(\IR_+\times [/mm] X,X)$ gilt. Was muss ich hierfür genau zeigen?

Muss $S$ sowohl nach [mm] $t\in\IR_+$ [/mm] stetig differenzierbar, als auch nach [mm] $u\in [/mm] X$ Frechet-differenzierbar sein? Und dessen gesamte Ableitung wieder stetig? Oder wie genau kann ich mir das vorstellen?

Danke für eure Antworten

Gruß Denny

        
Bezug
Differenzierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 So 09.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]